Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 17 results
    • https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_1030%3A_General_Physics_I/06%3A_Work_and_Energy/6.5%3A_Potential_Energy_and_Conservation_of_Energy
      Conservative force—a force with the property that the work done in moving a particle between two points is independent of the path it takes.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/05%3A_Forces/5.08%3A_Common_Forces_-_The_Coulomb_Force
      The electric force F on one of the charges is proportional to the magnitude of its own charge and the magnitude of the other charge, and is inversely proportional to the square of the distan...The electric force F on one of the charges is proportional to the magnitude of its own charge and the magnitude of the other charge, and is inversely proportional to the square of the distance between them: As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the electron points radially directly toward the proton, everywhere in the electron’s orbit.
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_1/02%3A_Electric_Fields/2.01%3A_Coulomb's_Law
      Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The magnitude of the force is linearly proportional to the ...Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional to the square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The direction of the force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/6%3A_Work_and_Energy/6.5%3A_Potential_Energy_and_Conservation_of_Energy
      Conservative force—a force with the property that the work done in moving a particle between two points is independent of the path it takes.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/08%3A_Work_and_Energy/8.21%3A_Potential_Energy_and_Conservation_of_Energy
      Conservative force—a force with the property that the work done in moving a particle between two points is independent of the path it takes.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/03%3A_Electric_Charge_and_Electric_Field/3.04%3A_Coulomb's_Law
      In this expression, Q represents the charge of the particle that is experiencing the electric force F, and is located at r from the origin; the qis are the N source charges, ...In this expression, Q represents the charge of the particle that is experiencing the electric force F, and is located at r from the origin; the qis are the N source charges, and the vectors ri are the displacements from the position of the ith charge to the position of Q.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/zz%3A_Back_Matter/10%3A_13.1%3A_Appendix_J-_Physics_Formulas_(Wevers)/1.02%3A_Electricity_and_Magnetism
      Electricity and magnetism from statics to electromagnetic fields as described by Maxwell's equations
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/JJC_-_PHYS_110/05%3A_Book-_Physics_(Boundless)/5.04%3A_Work_and_Energy/5.4.05%3A_Potential_Energy_and_Conservation_of_Energy
      Conservative force—a force with the property that the work done in moving a particle between two points is independent of the path it takes.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/05%3A_Electric_Charges_and_Fields/5.04%3A_Coulomb's_Law
      Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The magnitude of the force is linearly proportional to the ...Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional to the square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The direction of the force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/07%3A_Work_and_Energy/7.21%3A_Potential_Energy_and_Conservation_of_Energy
      Conservative force—a force with the property that the work done in moving a particle between two points is independent of the path it takes.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/PHYS202_-_JJC_-_Testing/02%3A_Conceptual_Objective_2/2.03%3A_Coulomb's_Law
      Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The magnitude of the force is linearly proportional to the ...Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional to the square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The direction of the force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges.

    Support Center

    How can we help?