Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Courses/Prince_Georges_Community_College/General_Physics_I%3A_Classical_Mechanics/66%3A_Appendices/66.05%3A_Table_of_Derivatives
      & \frac{d}{d x} \sin x=\cos x \\ & \frac{d}{d x} \cos x=-\sin x \\ & \frac{d}{d x} \tan x=\sec { }^{2} x \\ & \frac{d}{d x} \sec x=\tan x \sec x \\ & \frac{d}{d x} \csc x=-\cot x \csc x \\ & \frac{d}{...& \frac{d}{d x} \sin x=\cos x \\ & \frac{d}{d x} \cos x=-\sin x \\ & \frac{d}{d x} \tan x=\sec { }^{2} x \\ & \frac{d}{d x} \sec x=\tan x \sec x \\ & \frac{d}{d x} \csc x=-\cot x \csc x \\ & \frac{d}{d x} \ln x=\frac{1}{x} \\ & \frac{d}{d x} a^{x}=a^{x} \ln a \\ & \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a} \\ & \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \\ & \frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}} \\ & \frac{d}{d x} \csc ^{-1} x=\frac{-1}{|x| \sqrt{x^{2}-1}} \\
    • https://phys.libretexts.org/Bookshelves/University_Physics/Radically_Modern_Introductory_Physics_Text_I_(Raymond)/01%3A_Waves_in_One_Dimension/1.08%3A_Math_Review__Derivatives
      This section provides a quick review of the idea of the derivative. Often we are interested in the slope of a line tangent to a function y(x) at some value of x. This slope is called the derivative an...This section provides a quick review of the idea of the derivative. Often we are interested in the slope of a line tangent to a function y(x) at some value of x. This slope is called the derivative and is denoted dy∕dx.

    Support Center

    How can we help?