Search
- Filter Results
- Location
- Classification
- Include attachments
- https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/11%3A_Electromagnetic_Waves/11.02%3A_Maxwells_Equations_and_Electromagnetic_WavesJames Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of ...James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/08%3A_Electromagnetic_Waves/8.01%3A_Maxwells_Equations_and_Electromagnetic_WavesThen the z-component of the electric field between the plates as a function of time t is Ez(t)=V0d(1−e−t/RC). Therefore, the z-component of the displacemen...Then the z-component of the electric field between the plates as a function of time t is Ez(t)=V0d(1−e−t/RC). Therefore, the z-component of the displacement current Id between the plates is Id(t)=ϵ0A∂Ez(t)∂t=ϵ0AV0d×1RCe−t/RC=V0Re−t/RC, where we have used C=ϵ0Ad for the capacitance.
- https://phys.libretexts.org/Courses/Berea_College/Electromagnetics_I/08%3A_Time-Varying_Fields/8.09%3A_Displacement_Current_and_Amperes_LawIn this section, we generalize Ampere’s Law, previously encountered as a principle of magnetostatics. We shall now demonstrate that this equation is unreliable if the current is not steady; i.e., not ...In this section, we generalize Ampere’s Law, previously encountered as a principle of magnetostatics. We shall now demonstrate that this equation is unreliable if the current is not steady; i.e., not DC.
- https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/16%3A_Electromagnetic_Waves/16.02%3A_Maxwells_Equations_and_Electromagnetic_WavesJames Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of ...James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/zz%3A_Back_Matter/10%3A_13.1%3A_Appendix_J-_Physics_Formulas_(Wevers)/1.02%3A_Electricity_and_MagnetismElectricity and magnetism from statics to electromagnetic fields as described by Maxwell's equations
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/09%3A_Electromagnetic_Waves/9.02%3A_Maxwells_Equations_and_Electromagnetic_WavesThen the z-component of the electric field between the plates as a function of time t is Ez(t)=V0d(1−e−t/RC). Therefore, the z-component of the displacemen...Then the z-component of the electric field between the plates as a function of time t is Ez(t)=V0d(1−e−t/RC). Therefore, the z-component of the displacement current Id between the plates is Id(t)=ϵ0A∂Ez(t)∂t=ϵ0AV0d×1RCe−t/RC=V0Re−t/RC, where we have used C=ϵ0Ad for the capacitance.
- https://phys.libretexts.org/Learning_Objects/A_Physics_Formulary/Physics/02%3A_Electricity_and_MagnetismElectricity and magnetism from statics to electromagnetic fields as described by Maxwell's equations
- https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_1/07%3A_Electromagnetic_Waves/7.02%3A_Maxwells_Equations_and_Electromagnetic_WavesJames Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of ...James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.
- https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/20%3A_Maxwell's_Equations/20.05%3A_Maxwells_Equations_and_Electromagnetic_WavesJames Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of ...James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.
- https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_I_(Ellingson)/08%3A_Time-Varying_Fields/8.09%3A_Displacement_Current_and_Amperes_LawIn this section, we generalize Ampere’s Law, previously encountered as a principle of magnetostatics. We shall now demonstrate that this equation is unreliable if the current is not steady; i.e., not ...In this section, we generalize Ampere’s Law, previously encountered as a principle of magnetostatics. We shall now demonstrate that this equation is unreliable if the current is not steady; i.e., not DC.