Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 6 results
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/PHYS202_-_JJC_-_Testing/08%3A_Chapter_8/8.02%3A_Equipotential_Surfaces_and_Conductors
      We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the mag...We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the magnitude and direction of the electric field, and we use green lines to represent places where the electric potential is constant. These are called equipotential surfaces in three dimensions, or equipotential lines in two dimensions.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/03%3A_Electric_Potential/3.06%3A_Equipotential_Surfaces_and_Conductors
      We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the mag...We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the magnitude and direction of the electric field, and we use green lines to represent places where the electric potential is constant. These are called equipotential surfaces in three dimensions, or equipotential lines in two dimensions.
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/04%3A_Potential_and_Field_Relationships/4.03%3A_Equipotential_Curves_and_Surfaces
      We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the mag...We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the magnitude and direction of the electric field, and we use green lines to represent places where the electric potential is constant. These are called equipotential surfaces in three dimensions, or equipotential lines in two dimensions.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/07%3A_Electric_Potential/7.06%3A_Equipotential_Surfaces_and_Conductors
      We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the mag...We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the magnitude and direction of the electric field, and we use green lines to represent places where the electric potential is constant. These are called equipotential surfaces in three dimensions, or equipotential lines in two dimensions.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/03%3A_Electric_Potential/3.06%3A_Equipotential_Surfaces_and_Conductors
      We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the mag...We can represent electric potentials pictorially, just as we drew pictures to illustrate electric fields. This is not surprising, since the two concepts are related. We use arrows to represent the magnitude and direction of the electric field, and we use green lines to represent places where the electric potential is constant. These are called equipotential surfaces in three dimensions, or equipotential lines in two dimensions.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/04%3A_Electric_Potential_and_Capacitance/4.03%3A_Equipotential_Surfaces_and_Conductors
      The line that is equidistant from the two opposite charges corresponds to zero potential, since at the points on the line, the positive potential from the positive charge cancels the negative potentia...The line that is equidistant from the two opposite charges corresponds to zero potential, since at the points on the line, the positive potential from the positive charge cancels the negative potential from the negative charge. As expected, in the region \(r \geq R\), the electric field due to a charge q placed on an isolated conducting sphere of radius R is identical to the electric field of a point charge q located at the center of the sphere.

    Support Center

    How can we help?