Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 4 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/zz%3A_Back_Matter/10%3A_13.1%3A_Appendix_J-_Physics_Formulas_(Wevers)/1.15%3A_Quantum_Field_Theory_and_Particle_Physics
      Quantum field theory, field quantization, Klein Gordon equation, standard model
    • https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Advanced_Quantum_Mechanics_(Kok)/03%3A_Schrodinger_and_Heisenberg_Pictures
      \[\frac{d}{d t} \operatorname{Tr}\left[\left|\psi_{S}(t)\right\rangle\left\langle\psi_{S}(t)\right| A_{S}\right]=\frac{d}{d t}\left\langle\psi_{S}(t)\left|A_{S}\right| \psi_{S}(t)\right\rangle=\frac{d...\[\frac{d}{d t} \operatorname{Tr}\left[\left|\psi_{S}(t)\right\rangle\left\langle\psi_{S}(t)\right| A_{S}\right]=\frac{d}{d t}\left\langle\psi_{S}(t)\left|A_{S}\right| \psi_{S}(t)\right\rangle=\frac{d}{d t}\left\langle\psi_{H}\left|A_{H}(t)\right| \psi_{H}\right\rangle\tag{3.5}\] Using \(|\psi(t)\rangle_{I}=U_{0}^{\dagger}(t)|\psi(t)\rangle_{S}\) with \(U_{0}(t)=\exp \left(-i H_{0} t / \hbar\right)\), calculate the time dependence of an operator in the interaction picture \(A_{I}(t)\).
    • https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Introduction_to_Applied_Nuclear_Physics_(Cappellaro)/06%3A_Time_Evolution_in_Quantum_Mechanics/6.03%3A_Evolution_of_Operators_and_Expectation_Values
      The Schrödinger equation describes how the state of a system evolves. Since via experiments we have access to observables and their outcomes, it is interesting to find a differential equation that dir...The Schrödinger equation describes how the state of a system evolves. Since via experiments we have access to observables and their outcomes, it is interesting to find a differential equation that directly gives the evolution of expectation values.
    • https://phys.libretexts.org/Learning_Objects/A_Physics_Formulary/Physics/15%3A_Quantum_Field_Theory_and_Particle_Physics
      Quantum field theory, field quantization, Klein Gordon equation, standard model

    Support Center

    How can we help?