Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 4 results
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/30%3A_Atomic_Physics/30.08%3A_Quantum_Numbers_and_Rules
      hysical characteristics that are quantized -- such as energy, charge, and angular momentum -- are of such importance that names and symbols are given to them. The values of quantized entities are expr...hysical characteristics that are quantized -- such as energy, charge, and angular momentum -- are of such importance that names and symbols are given to them. The values of quantized entities are expressed in terms of quantum numbers , and the rules governing them are of the utmost importance in determining what nature is and does. This section covers some of the more important quantum numbers and rules.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/06%3A_Photons_and_Matter_Waves/6.05%3A_Bohrs_Model_of_the_Hydrogen_Atom
      Classical physics cannot explain the spectrum of atomic hydrogen. The Bohr model of hydrogen was the first model of atomic structure to correctly explain the radiation spectra of atomic hydrogen. It w...Classical physics cannot explain the spectrum of atomic hydrogen. The Bohr model of hydrogen was the first model of atomic structure to correctly explain the radiation spectra of atomic hydrogen. It was preceded by the Rutherford nuclear model of the atom. In Rutherford’s model, an atom consists of a positively charged point-like nucleus that contains almost the entire mass of the atom and of negative electrons that are located far away from the nucleus.
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/05%3A_Photons_and_Matter_Waves/5.05%3A_Bohrs_Model_of_the_Hydrogen_Atom
      Classical physics cannot explain the spectrum of atomic hydrogen. The Bohr model of hydrogen was the first model of atomic structure to correctly explain the radiation spectra of atomic hydrogen. It w...Classical physics cannot explain the spectrum of atomic hydrogen. The Bohr model of hydrogen was the first model of atomic structure to correctly explain the radiation spectra of atomic hydrogen. It was preceded by the Rutherford nuclear model of the atom. In Rutherford’s model, an atom consists of a positively charged point-like nucleus that contains almost the entire mass of the atom and of negative electrons that are located far away from the nucleus.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC_%3A_Physics_213_-_Modern_Physics/03%3A_Photons_and_Matter_Waves/3.05%3A_Bohrs_Model_of_the_Hydrogen_Atom
      Classical physics cannot explain the spectrum of atomic hydrogen. The Bohr model of hydrogen was the first model of atomic structure to correctly explain the radiation spectra of atomic hydrogen. It w...Classical physics cannot explain the spectrum of atomic hydrogen. The Bohr model of hydrogen was the first model of atomic structure to correctly explain the radiation spectra of atomic hydrogen. It was preceded by the Rutherford nuclear model of the atom. In Rutherford’s model, an atom consists of a positively charged point-like nucleus that contains almost the entire mass of the atom and of negative electrons that are located far away from the nucleus.

    Support Center

    How can we help?