This was an important early test of general relativity: the amount of light bending predicted by general relativity was confirmed by measuring the positions of stars near the Sun during a solar eclips...This was an important early test of general relativity: the amount of light bending predicted by general relativity was confirmed by measuring the positions of stars near the Sun during a solar eclipse in 1919. This effect has been observed recently by the Hubble Space Telescope in the form of gravitational lensing: the gravity of a relatively nearby galaxy will bend the light from more distant objects, producing multiple images of the distant object.
A provocative feature of the Schwarzschild metric is that it has elements that blow up at r=0 and at r=2m. If this is a description of the sun, for example, then these singularities are of no physic...A provocative feature of the Schwarzschild metric is that it has elements that blow up at r=0 and at r=2m. If this is a description of the sun, for example, then these singularities are of no physical significance, since we only solved the Einstein field equation for the vacuum region outside the sun, whereas r=2m would lie about 3 km from the sun’s center. Furthermore, it is possible that one or both of these singularities is nothing more than a spot where our coordinate system misbehaves.