Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 10 results
    • https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_2040%3A_General_Physics_III/07%3A__Special_Relativity/7.3%3A_Relativistic_Quantities
      A velocity-addition formula is an equation that relates the velocities of moving objects in different reference frames.
    • https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_2040%3A_General_Physics_III/07%3A__Special_Relativity/7.2%3A_Consequences_of_Special_Relativity
      The relativity of simultaneity is the concept that simultaneity is not absolute, but depends on the observer’s reference frame.
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/24%3A_Electromagnetic_Waves/24.01%3A_Maxwells_Equations-_Electromagnetic_Waves_Predicted_and_Observed
      Electromagnetic waves consist of oscillating electric and magnetic fields and propagate at the speed of light \(c\). They were predicted by Maxwell, who also showed that \[c = \frac{1}{\sqrt{\mu_{0} \...Electromagnetic waves consist of oscillating electric and magnetic fields and propagate at the speed of light \(c\). They were predicted by Maxwell, who also showed that \[c = \frac{1}{\sqrt{\mu_{0} \epsilon_{0}}},\] where \(mu_{0}\) is the permeability of free space and \(\epsilon_{0}\) is the permitivity of free space. Maxwell’s prediction of electromagnetic waves resulted from his formulation of a complete and symmetric theory of electricity and magnetism, known as Maxwell’s equations.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/05%3A__Relativity/5.10%3A_Relativistic_Energy
      The rest energy of an object of mass m is \(E_0 = mc^2\), meaning that mass is a form of energy. If energy is stored in an object, its mass increases. Mass can be destroyed to release energy. Relativi...The rest energy of an object of mass m is \(E_0 = mc^2\), meaning that mass is a form of energy. If energy is stored in an object, its mass increases. Mass can be destroyed to release energy. Relativistic energy is conserved as long as we define it to include the possibility of mass changing to energy. At extremely high velocities, the rest energy \(mc^2\) becomes negligible, and \(E = pc\).
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/05%3A__Relativity/5.10%3A_Relativistic_Energy
      The rest energy of an object of mass m is \(E_0 = mc^2\), meaning that mass is a form of energy. If energy is stored in an object, its mass increases. Mass can be destroyed to release energy. Relativi...The rest energy of an object of mass m is \(E_0 = mc^2\), meaning that mass is a form of energy. If energy is stored in an object, its mass increases. Mass can be destroyed to release energy. Relativistic energy is conserved as long as we define it to include the possibility of mass changing to energy. At extremely high velocities, the rest energy \(mc^2\) becomes negligible, and \(E = pc\).
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/11%3A_Electromagnetic_Waves/11.02%3A_Maxwells_Equations-_Electromagnetic_Waves_Predicted_and_Observed
      Electromagnetic waves consist of oscillating electric and magnetic fields and propagate at the speed of light \(c\). They were predicted by Maxwell, who also showed that \[c = \frac{1}{\sqrt{\mu_{0} \...Electromagnetic waves consist of oscillating electric and magnetic fields and propagate at the speed of light \(c\). They were predicted by Maxwell, who also showed that \[c = \frac{1}{\sqrt{\mu_{0} \epsilon_{0}}},\] where \(mu_{0}\) is the permeability of free space and \(\epsilon_{0}\) is the permitivity of free space. Maxwell’s prediction of electromagnetic waves resulted from his formulation of a complete and symmetric theory of electricity and magnetism, known as Maxwell’s equations.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/27%3A__Special_Relativity/27.3%3A_Relativistic_Quantities
      A velocity-addition formula is an equation that relates the velocities of moving objects in different reference frames.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/27%3A__Special_Relativity/27.2%3A_Consequences_of_Special_Relativity
      The relativity of simultaneity is the concept that simultaneity is not absolute, but depends on the observer’s reference frame.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC_%3A_Physics_213_-_Modern_Physics/01%3A__Relativity/1.10%3A_Relativistic_Energy
      The rest energy of an object of mass m is \(E_0 = mc^2\), meaning that mass is a form of energy. If energy is stored in an object, its mass increases. Mass can be destroyed to release energy. Relativi...The rest energy of an object of mass m is \(E_0 = mc^2\), meaning that mass is a form of energy. If energy is stored in an object, its mass increases. Mass can be destroyed to release energy. Relativistic energy is conserved as long as we define it to include the possibility of mass changing to energy. At extremely high velocities, the rest energy \(mc^2\) becomes negligible, and \(E = pc\).
    • https://phys.libretexts.org/Courses/Prince_Georges_Community_College/General_Physics_I%3A_Classical_Mechanics/62%3A_Special_Relativity/62.01%3A_Postulates
      The speed of light is independent of the motion of the source. The first postulate says that all motion is relative-that there is no reference frame that all observers can agree to be absolutely at re...The speed of light is independent of the motion of the source. The first postulate says that all motion is relative-that there is no reference frame that all observers can agree to be absolutely at rest. The second postulate says that light does not obey the usual laws of velocity addition. For example, if someone is moving toward you at \(99 \%\) of the speed of light and turns on a flashlight in your direction, you will measure the light's speed to be the same as if that person were at rest.

    Support Center

    How can we help?