Search
- Filter Results
- Location
- Classification
- Include attachments
- https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/24%3A_Electromagnetic_Waves/24.03%3A_The_Electromagnetic_SpectrumIn this module we examine how electromagnetic waves are classified into categories such as radio, infrared, ultraviolet, and so on, so that we can understand some of their similarities as well as some...In this module we examine how electromagnetic waves are classified into categories such as radio, infrared, ultraviolet, and so on, so that we can understand some of their similarities as well as some of their differences. We will also find that there are many connections with previously discussed topics, such as wavelength and resonance.
- https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/11%3A_Electromagnetic_Waves/11.04%3A_The_Electromagnetic_SpectrumIn this module we examine how electromagnetic waves are classified into categories such as radio, infrared, ultraviolet, and so on, so that we can understand some of their similarities as well as some...In this module we examine how electromagnetic waves are classified into categories such as radio, infrared, ultraviolet, and so on, so that we can understand some of their similarities as well as some of their differences. We will also find that there are many connections with previously discussed topics, such as wavelength and resonance.
- https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/29%3A_Introduction_to_Quantum_Physics/29.03%3A_Photon_Energies_and_the_Electromagnetic_SpectrumPreviously in this book, photon characteristics were alluded to in the discussion of some of the characteristics of UV, x rays, and \(\gamma\) rays, the first of which start with frequencies just abov...Previously in this book, photon characteristics were alluded to in the discussion of some of the characteristics of UV, x rays, and \(\gamma\) rays, the first of which start with frequencies just above violet in the visible spectrum. Electrons can give all of their kinetic energy to a single photon when they strike the anode of a CRT. (This is something like the photoelectric effect in reverse.) The kinetic energy of the electron comes from electrical potential energy.