Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/01%3A_Introduction_to_electromagnetics_and_electromagnetic_fields/1.04%3A_Ampere%E2%80%99s_Law_and_magnetostatic_fields
      This page explains Ampere's law related to static current densities, linking the magnetic field H with current density J in different geometries. It details calculations for cylindri...This page explains Ampere's law related to static current densities, linking the magnetic field H with current density J in different geometries. It details calculations for cylindrical currents and describes the uniform magnetic field between parallel plates with opposing currents. The text emphasizes the role of Maxwell's equations and the Lorentz force law in electromagnetic phenomena, providing simplified models of electric and magnetic fields.
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/02%3A_Introduction_to_Electrodynamics/2.06%3A_Boundary_conditions_for_electromagnetic_fields
      This page explores Maxwell's equations relating to electromagnetic fields in materials, specifically focusing on boundary conditions at media interfaces. It details how these conditions influence perp...This page explores Maxwell's equations relating to electromagnetic fields in materials, specifically focusing on boundary conditions at media interfaces. It details how these conditions influence perpendicular and parallel field components, the role of surface charges and currents, and the continuity required across boundaries.

    Support Center

    How can we help?