Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Complex_Methods_for_the_Sciences_(Chong)/05%3A_Complex_Oscillations/5.02%3A_Complex_Solution
      The first and second derivatives are: \[\begin{align} \frac{dz}{dt} &= -i\omega\, e^{-i\omega t} \\ \frac{d^2z}{dt^2} &= -\omega^2\, e^{-i\omega t}\end{align}\] Substituting these into the differentia...The first and second derivatives are: \[\begin{align} \frac{dz}{dt} &= -i\omega\, e^{-i\omega t} \\ \frac{d^2z}{dt^2} &= -\omega^2\, e^{-i\omega t}\end{align}\] Substituting these into the differential equation gives: \[\left[-\omega^2 - 2i\gamma \omega + \omega_0^2 \right] e^{-i\omega t} = 0.\] This equation holds for all \(t\) if and only if the complex second-order polynomial on the left-hand side is zero: \[-\omega^2 - 2i\gamma \omega + \omega_0^2 = 0.\] The solutions for \(\omega\) can be …

    Support Center

    How can we help?