Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/01%3A_Scattering_Theory/1.09%3A_Example-_Uniform_Spherical_Well_in_3D
      Let us do this for just the first two terms in the series: \[\begin{align} \begin{aligned}f(\mathbf{k}_i\rightarrow \mathbf{k}_f) &\approx - \frac{2m}{\hbar^2} \; 2\pi^2 \Bigg[\int d^3r_1\; \frac{\exp...Let us do this for just the first two terms in the series: \[\begin{align} \begin{aligned}f(\mathbf{k}_i\rightarrow \mathbf{k}_f) &\approx - \frac{2m}{\hbar^2} \; 2\pi^2 \Bigg[\int d^3r_1\; \frac{\exp(-i\mathbf{k}_f \cdot \mathbf{r}_1)}{(2\pi)^{3/2}} \, V(\mathbf{r}_1) \, \frac{\exp(i\mathbf{k}_i \cdot \mathbf{r}_1)}{(2\pi)^{3/2}} \\&\qquad\qquad\quad + \int d^3r_1 \!\! \int d^3r_2 \; \frac{\exp(-i\mathbf{k}_f \cdot \mathbf{r}_2)}{(2\pi)^{3/2}} \, V(\mathbf{r}_2) \, \langle\mathbf{r}_2|\hat{G}_…
    • https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/06%3A_Appendices/6.01%3A_A-_Partial_Wave_Analysis
      The scattering matrix relation can then be re-written as \[\begin{align} c^+_\mu &= c^+_{i,\mu} + c^+_{s,\mu} = \sum_{\mu\nu} S_{\mu\nu} c^-_{i,\nu} \\ \Rightarrow \;\;\; c^+_{s,\ell m} &= 2 \pi \sum_...The scattering matrix relation can then be re-written as \[\begin{align} c^+_\mu &= c^+_{i,\mu} + c^+_{s,\mu} = \sum_{\mu\nu} S_{\mu\nu} c^-_{i,\nu} \\ \Rightarrow \;\;\; c^+_{s,\ell m} &= 2 \pi \sum_{\ell' m'} \Big(S_{\ell m, \ell' m'} - \delta_{\ell \ell'}\delta_{mm'}\Big) e^{i\ell'\pi/2} \, Y_{\ell' m'}^*(\hat{\mathbf{k}}_i)\; \Psi_i.\end{align}\] Using this, the scattered wavefunction can be written as \[\begin{align}\begin{aligned}\psi_s(\mathbf{r}) &= \sum_{\ell m} c^+_{s,\ell m} h_{\ell}…

    Support Center

    How can we help?