Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 8 results
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/22%3A_Magnetism/22.09%3A_Magnetic_Fields_Produced_by_Currents-_Amperes_Law
      The strength of the magnetic field created by current in a long straight wire is given by \[B = \frac{\mu_{0}I}{2 \pi r} \left(long \quad straight \quad wire\right),\tag{22.10.1}\] where \(I\) is the ...The strength of the magnetic field created by current in a long straight wire is given by \[B = \frac{\mu_{0}I}{2 \pi r} \left(long \quad straight \quad wire\right),\tag{22.10.1}\] where \(I\) is the current, \(r\) is the shortest distance to the wire, and the constant \(\mu_{0} = 4\pi \times 10^{-7} T \cdot m/a\) is the permeability of free space. The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of the right hand in the d
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/08%3A_Sources_of_Magnetic_Fields/8.06%3A_Magnetism_in_Matter/8.6.01%3A_Magnets
      There are two type of magnets—ferromagnets that can sustain a permanent magnetic field, and electromagnets produced by the flow of current.
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/06%3A_Actuators_and_sensors_motors_and_generators/6.04%3A_Linear_magnetic_motors_and_actuators
      This page covers solenoid actuators, which use cylindrical coils and a high-permeability core that moves with current. It examines the behavior of internal magnetic fields and their forces, including ...This page covers solenoid actuators, which use cylindrical coils and a high-permeability core that moves with current. It examines the behavior of internal magnetic fields and their forces, including fringing fields and energy density. Additionally, it discusses magnetic fields' application in MEMS switches, detailing how magnetic pressures and the Lorentz force law facilitate current-induced movements in a beam, enabling logical functions in these devices.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/21%3A_Magnetism/21.2%3A_Magnets
      There are two type of magnets—ferromagnets that can sustain a permanent magnetic field, and electromagnets produced by the flow of current.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/22%3A_Induction_AC_Circuits_and_Electrical_Technologies/22.1%3A_Magnetic_Flux_Induction_and_Faradays_Law
      Faraday’s law of induction states that an electromotive force is induced by a change in the magnetic flux.
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/09%3A_Magnetic_Potential/9.04%3A_Long_Solenoid
      In that case, we already know that the field inside the solenoid is uniform and is \(\mu\, n\, I\, \hat{\textbf{z}}\) inside the solenoid and zero outside. Now, as everybody knows, the surface integra...In that case, we already know that the field inside the solenoid is uniform and is \(\mu\, n\, I\, \hat{\textbf{z}}\) inside the solenoid and zero outside. Now, as everybody knows, the surface integral of a vector field across a closed curve is equal to the line integral of its curl around the curve, and this is equal to \(2\pi r A_\phi\).
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/07%3A_Magnetism/7.10%3A_Magnetic_Fields_Produced_by_Currents-_Amperes_Law
      The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of the right hand in the direction of current, and the fingers curl in the di...The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops created by it. a rule to determine the direction of the magnetic field induced by a current-carrying wire: Point the thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops
    • https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9C__Electricity_and_Magnetism/4%3A_Magnetism/4.4%3A_Sources_of_Magnetic_Fields
      Now that we know the basic cause of magnetic fields, we will practice calculating these fields, and will look at some common sources.

    Support Center

    How can we help?