In this definition, we arbitrarily set \(\hat{\bf l}\), the real-valued unit vector indicating the direction of \({\bf l}_e\), equal to the direction in which the electric field transmitted from this ...In this definition, we arbitrarily set \(\hat{\bf l}\), the real-valued unit vector indicating the direction of \({\bf l}_e\), equal to the direction in which the electric field transmitted from this antenna would be polarized in the far field. The vector effective length \({\bf l}_e = \hat{\bf l} l_e\) is defined as follows: \(\hat{\bf l}\) is the real-valued unit vector corresponding to the polarization of the electric field that would be transmitted from the antenna in the far field.
In this definition, we arbitrarily set \(\hat{\bf l}\), the real-valued unit vector indicating the direction of \({\bf l}_e\), equal to the direction in which the electric field transmitted from this ...In this definition, we arbitrarily set \(\hat{\bf l}\), the real-valued unit vector indicating the direction of \({\bf l}_e\), equal to the direction in which the electric field transmitted from this antenna would be polarized in the far field. The vector effective length \({\bf l}_e = \hat{\bf l} l_e\) is defined as follows: \(\hat{\bf l}\) is the real-valued unit vector corresponding to the polarization of the electric field that would be transmitted from the antenna in the far field.