Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/12%3A_Rotational_Energy_and_Momentum/12.02%3A_Rolling_motion
      The mechanical energy at the bottom of the incline is thus: \[\begin{aligned} E' = K' + U = K'_{rot}+K'_{trans}+(0)=\frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}Mv_{cm}^2\end{aligned}\] Since the disk is ro...The mechanical energy at the bottom of the incline is thus: \[\begin{aligned} E' = K' + U = K'_{rot}+K'_{trans}+(0)=\frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}Mv_{cm}^2\end{aligned}\] Since the disk is rolling without slipping, its angular speed is related to the speed of center of mass: \[\begin{aligned} \omega = \frac{v_{CM}}{R}\end{aligned}\] The moment of inertia of the disk about its center of mass is given by: \[\begin{aligned} I_{CM}=\frac{1}{2}MR^2\end{aligned}\] We can thus write the mecha…
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/08%3A_Work_Power_and_Energy/8.04%3A_Rolling_motion
      The mechanical energy at the bottom of the incline is thus: \[\begin{aligned} E' = K' + U = K'_{rot}+K'_{trans}+(0)=\frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}Mv_{cm}^2\end{aligned}\] Since the disk is ro...The mechanical energy at the bottom of the incline is thus: \[\begin{aligned} E' = K' + U = K'_{rot}+K'_{trans}+(0)=\frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}Mv_{cm}^2\end{aligned}\] Since the disk is rolling without slipping, its angular speed is related to the speed of center of mass: \[\begin{aligned} \omega = \frac{v_{CM}}{R}\end{aligned}\] The moment of inertia of the disk about its center of mass is given by: \[\begin{aligned} I_{CM}=\frac{1}{2}MR^2\end{aligned}\] We can thus write the mecha…

    Support Center

    How can we help?