Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/24%3A_The_Theory_of_Special_Relativity/24.07%3A_Relativistic_momentum_and_energy
      by parts)}\\ &=\gamma m_0 U^2-m_0\int_0^U\frac{udu}{\sqrt{1-\frac{u^2}{c^2}}}\\ &=\gamma m_0 U^2-m_0\Big[ c^2\sqrt{1-\frac{u^2}{c^2}} \Big]_0^U\\ &=\gamma m_0 U^2-m_0c^2+m_0c^2\sqrt{1-\frac{U^2}{c^2}}...by parts)}\\ &=\gamma m_0 U^2-m_0\int_0^U\frac{udu}{\sqrt{1-\frac{u^2}{c^2}}}\\ &=\gamma m_0 U^2-m_0\Big[ c^2\sqrt{1-\frac{u^2}{c^2}} \Big]_0^U\\ &=\gamma m_0 U^2-m_0c^2+m_0c^2\sqrt{1-\frac{U^2}{c^2}}\\ &=\gamma \left(m_0 U^2+m_0c^2\left(1-\frac{U^2}{c^2}\right)\right)-m_0c^2\\ &=m_0c^2(\gamma -1) \end{aligned}\] Since the object started at rest (with a speed \(u=0\)) the above integral corresponds to what we would call the kinetic energy of the object, with a speed, \(u\): \[\begin{aligned} K=…

    Support Center

    How can we help?