Search
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/09%3A_Electromagnetic_Waves/9.01%3A_Maxwells_Equations_and_Electromagnetic_WavesThen the z-component of the electric field between the plates as a function of time t is \[E_z (t) = \dfrac{V_0}{d}\left(1 - e^{-t/RC}\right). \nonumber\] Therefore, the z-component of the displacemen...Then the z-component of the electric field between the plates as a function of time t is \[E_z (t) = \dfrac{V_0}{d}\left(1 - e^{-t/RC}\right). \nonumber\] Therefore, the z-component of the displacement current \(I_d\) between the plates is \[I_d (t) = \epsilon_0 A\dfrac{\partial E_z (t)}{\partial t} = \epsilon_0 A \dfrac{V_0}{d} \times \dfrac{1}{RC} e^{-t/RC} = \dfrac{V_0}{R} e^{-t/RC}, \nonumber\] where we have used \(C = \epsilon_0 \dfrac{A}{d}\) for the capacitance.
- https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/11%3A_Electromagnetic_Waves/11.02%3A_Maxwells_Equations_and_Electromagnetic_WavesJames Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of ...James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/09%3A_Electromagnetic_Waves/9.02%3A_Maxwells_Equations_and_Electromagnetic_WavesThen the z-component of the electric field between the plates as a function of time t is \[E_z (t) = \dfrac{V_0}{d}\left(1 - e^{-t/RC}\right). \nonumber\] Therefore, the z-component of the displacemen...Then the z-component of the electric field between the plates as a function of time t is \[E_z (t) = \dfrac{V_0}{d}\left(1 - e^{-t/RC}\right). \nonumber\] Therefore, the z-component of the displacement current \(I_d\) between the plates is \[I_d (t) = \epsilon_0 A\dfrac{\partial E_z (t)}{\partial t} = \epsilon_0 A \dfrac{V_0}{d} \times \dfrac{1}{RC} e^{-t/RC} = \dfrac{V_0}{R} e^{-t/RC}, \nonumber\] where we have used \(C = \epsilon_0 \dfrac{A}{d}\) for the capacitance.
- https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_1/07%3A_Electromagnetic_Waves/7.02%3A_Maxwells_Equations_and_Electromagnetic_WavesJames Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of ...James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.
- https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/20%3A_Maxwell's_Equations/20.05%3A_Maxwells_Equations_and_Electromagnetic_WavesJames Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of ...James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to the nature of Saturn’s rings. He is best known for having combined existing knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic theory, represented by Maxwell’s equations.