Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 5 results
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/04%3A_Diffraction/4.07%3A_X-Ray_Diffraction
      Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows...Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms and molecules. The process is called X-ray diffraction, and it involves the interference of X-rays to produce patterns.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Physical_Optics/10.10%3A_X-Ray_Diffraction
      If a diffraction pattern is obtained, he reasoned, then the X-rays must be waves, and their wavelength could be determined. (The spacing of atoms in various crystals was reasonably well known at the t...If a diffraction pattern is obtained, he reasoned, then the X-rays must be waves, and their wavelength could be determined. (The spacing of atoms in various crystals was reasonably well known at the time, based on good values for Avogadro’s number.) The experiments were convincing, and the 1914 Nobel Prize in Physics was given to von Laue for his suggestion leading to the proof that X-rays are EM waves.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/14%3A_Diffraction/14.07%3A_X-Ray_Diffraction
      Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows...Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms and molecules. The process is called X-ray diffraction, and it involves the interference of X-rays to produce patterns.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/11%3A_Physical_Optics/11.15%3A_X-Ray_Diffraction
      Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows...Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms and molecules. The process is called X-ray diffraction, and it involves the interference of X-rays to produce patterns.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/13%3A_Diffraction/13.07%3A_X-Ray_Diffraction
      Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows...Since X-ray photons are very energetic, they have relatively short wavelengths. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms and molecules. The process is called X-ray diffraction, and it involves the interference of X-rays to produce patterns.

    Support Center

    How can we help?