Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Courses/Coalinga_College/Physical_Science_for_Educators_(CID%3A_PHYS_14)/11%3A_Electricity/11.03%3A_Static_Electricity/11.3.04%3A_Electric_Field_Lines
      Note that the electric field is defined for a positive test charge \(q\), so that the field lines point away from a positive charge and toward a negative charge. (See Figure \(\PageIndex{2}\).) The el...Note that the electric field is defined for a positive test charge \(q\), so that the field lines point away from a positive charge and toward a negative charge. (See Figure \(\PageIndex{2}\).) The electric field strength is exactly proportional to the number of field lines per unit area, since the magnitude of the electric field for a point charge is \(E=k|Q| / r^{2}\) and area is proportional to \(r^{2}\).
    • https://phys.libretexts.org/Courses/Fresno_City_College/NATSCI-1A%3A_Natural_Science_for_Educators_Fresno_City_College_(CID%3A_PHYS_140)/07%3A_Electricity/7.03%3A_Static_Electricity/7.3.04%3A_Electric_Field_Lines
      Note that the electric field is defined for a positive test charge \(q\), so that the field lines point away from a positive charge and toward a negative charge. (See Figure \(\PageIndex{2}\).) The el...Note that the electric field is defined for a positive test charge \(q\), so that the field lines point away from a positive charge and toward a negative charge. (See Figure \(\PageIndex{2}\).) The electric field strength is exactly proportional to the number of field lines per unit area, since the magnitude of the electric field for a point charge is \(E=k|Q| / r^{2}\) and area is proportional to \(r^{2}\).

    Support Center

    How can we help?