Search
- https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/11%3A_Rotational_Kinematics_Angular_Momentum_and_Energy/11.19%3A_Rolling_MotionIn rolling motion without slipping, a static friction force is present between the rolling object and the surface. The linear velocity, acceleration, and distance of the center of mass are the angular...In rolling motion without slipping, a static friction force is present between the rolling object and the surface. The linear velocity, acceleration, and distance of the center of mass are the angular variables multiplied by the radius of the object. In rolling motion with slipping, a kinetic friction force arises between the rolling object and the surface. Energy conservation can be used to analyze rolling motion since energy is conserved in rolling motion without slipping.
- https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/10%3A_Rotational_Kinematics_Angular_Momentum_and_Energy/10.08%3A__Angular_Momentum/Rolling_MotionIn rolling motion without slipping, a static friction force is present between the rolling object and the surface. The linear velocity, acceleration, and distance of the center of mass are the angular...In rolling motion without slipping, a static friction force is present between the rolling object and the surface. The linear velocity, acceleration, and distance of the center of mass are the angular variables multiplied by the radius of the object. In rolling motion with slipping, a kinetic friction force arises between the rolling object and the surface. Energy conservation can be used to analyze rolling motion since energy is conserved in rolling motion without slipping.