If the body is thrown downwards, so that its initial speed is not zero but is \( v=v_{0}\) when \( t=0\), you will write the equation of motion either as Equation \( \ref{eq:6.3.10}\) or as Equation \...If the body is thrown downwards, so that its initial speed is not zero but is \( v=v_{0}\) when \( t=0\), you will write the equation of motion either as Equation \( \ref{eq:6.3.10}\) or as Equation \( \ref{eq:6.3.11}\), depending on whether the initial speed is slower than or faster than the terminal speed, thus ensuring that the denominator is kept firmly positive.
A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly a...A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to predict when a moving object creates turbulence.