Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 3 results
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/07%3A_Quantum_Mechanics/7.04%3A_The_Schrdinger_Equation
      The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about wave functions.  When a particle moves in a time-independent potential, a solutio...The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about wave functions.  When a particle moves in a time-independent potential, a solution of the time-dependent Schrӧdinger equation is a product of a time-independent wave function and a time-modulation factor. The Schrӧdinger equation can be applied to many physical situations.
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/06%3A_Quantum_Mechanics/6.04%3A_The_Schrdinger_Equation
      The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about wave functions.  When a particle moves in a time-independent potential, a solutio...The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about wave functions.  When a particle moves in a time-independent potential, a solution of the time-dependent Schrӧdinger equation is a product of a time-independent wave function and a time-modulation factor. The Schrӧdinger equation can be applied to many physical situations.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC_%3A_Physics_213_-_Modern_Physics/04%3A_Quantum_Mechanics/4.04%3A_The_Schrdinger_Equation
      The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about wave functions.  When a particle moves in a time-independent potential, a solutio...The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions about wave functions.  When a particle moves in a time-independent potential, a solution of the time-dependent Schrӧdinger equation is a product of a time-independent wave function and a time-modulation factor. The Schrӧdinger equation can be applied to many physical situations.

    Support Center

    How can we help?