Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

16.8: Some Simple Examples

( \newcommand{\kernel}{\mathrm{null}\,}\)

As we pointed out in the introduction to this chapter, this chapter is less demanding than some of the others, and indeed it has been quite trivial so far. Just to show how easy the topic is, here are a few quick examples.

Example \PageIndex{1}

A cylindrical vessel of cross-sectional area A is partially filled with water. A mass m of ice floats on the surface. The density of water is \rho_{0} and the density of ice is \rho. Calculate the change in the level of the water when the ice melts, and state whether the water level rises or falls.

Example \PageIndex{2}

A cork of mass m, density \rho, is held under water (density \rho_{0}) by a string. Calculate the tension in the string. Calculate the initial acceleration if the string is cut.

alt

Example \PageIndex{3}

A lump of lead (mass m, density \rho) is held hanging in water (density \rho_{0}) by two strings as shown. Calculate the tension in the strings.

alt

Example \PageIndex{4}

A hydrometer (for our purposes a hydrometer is a wooden rod weighted at the bottom for stability when it floats vertically) floats in equilibrium to a depth z_{1} in water of density \rho_{1}. If salt is added to the water so that the new density is \rho_{2}, what is the new depth z_{2}?

alt

Example \PageIndex{5}

A mass m, density \rho, hangs in a fluid of density \rho_{0} from the ceiling of an elevator (lift). The elevator accelerates upwards at a rate a. Calculate the tension in the string.

alt

Example \PageIndex{6}

A hydrometer of mass m and cross-sectional area A floats in equilibrium do a depth h in a liquid of density \rho. The hydrometer is then gently pushed down and released. Determine the period of oscillation.

Example \PageIndex{7}

A rod of length l and density s\rho( s<1) floats in a liquid of density \rho. One end of the rod is lifted up through a height yl so that a length xl remains immersed. I have drawn it with the rope vertical. Must it be?)

alt

i. Find x as a function of s.

ii. Find \theta as a function of y and s.

iii. Find the tension T in the rope as a function of m,\ g and s.

Draw the following graphs:

a. x and \frac{T}{(mg)} versus s.

b. \theta versus y for several s.

c. \theta versus s for several y.

d. x versus y for several s.

e. \frac{T}{(mg)} versus y for several s.

Answers

1. No, it does not.

2. T=\left(\frac{\rho_{0}-\rho}{\rho}\right)mg

3. T_{1}=\frac{\left(\frac{\rho-\rho_{0}}{\rho}\right)mg}{\cos\theta_{1}+\frac{\sin\theta_{1}}{\tan\theta_{2}}} T_{2}=\frac{\left(\frac{\rho-\rho_{0}}{\rho}\right)mg}{\cos\theta_{2}+\frac{\sin\theta_{2}}{\tan\theta_{1}}}

4. z_{2}=\frac{\rho_{1}}{\rho_{2}}z_{1}

5. T=m\left[a+g\left(\frac{\rho-\rho_{0}}{\rho}\right)\right]

6. P=2\pi\sqrt{\frac{m}{\rho Ag}}

7.

  1. x=1-\sqrt{1-s}
  2. \sin\theta=\frac{y}{\sqrt{1-s}}
  3. T=mg\left(\frac{\sqrt{1-s}-(1-s)}{s}\right)
  1. alt
  2. alt
  3. alt
  4. alt
  5. alt

This page titled 16.8: Some Simple Examples is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

  • Was this article helpful?

Support Center

How can we help?