8.9: Absorption and Stimulated Emission of Radiation
- Page ID
- 1234
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let us use some of the results of time-dependent perturbation theory to investigate the interaction of an atomic electron with classical (i.e., non-quantized) electromagnetic radiation.
The unperturbed Hamiltonian is
The standard classical prescription for obtaining the Hamiltonian of a particle of charge \( q\) in the presence of an electromagnetic field is
where \( {\bf A}(\bf r)\) is the vector potential and \( \phi({\bf r})\) is the scalar potential. Note that
This prescription also works in quantum mechanics. Thus, the Hamiltonian of an atomic electron placed in an electromagnetic field is
where \( {\bf A}\) and \( \phi\) are real functions of the position operators. The above equation can be written
Now,
provided that we adopt the gauge \( \nabla\cdot{\bf A} = 0\) . Hence,
Suppose that the perturbation corresponds to a monochromatic plane-wave, for which
where \( \epsilon\) and \( {\bf n}\) are unit vectors that specify the direction of polarization and the direction of propagation, respectively. Note that \( \epsilon\) \( \cdot{\bf n} = 0\) . The Hamiltonian becomes
with
and
where the \( A^2\) term, which is second order in \( A_0\) , has been neglected.
The perturbing Hamiltonian can be written
![$ H_1 = \frac{e \,A_0\, \mbox{\boldmath$\epsilon$}\cdot{\bf p} }{m_...
...\exp[-{\rm i}\,(\omega/c)\, {\bf n}\cdot{\bf x} + {\rm i}\, \omega\, t]\right).$](http://farside.ph.utexas.edu/teaching/qm/lectures/img2050.png)
This has the same form as Equation \ref{850}, provided that
It is clear, by analogy with the previous analysis, that the first term on the right-hand side of Equation \ref{876} describes the absorption of a photon of energy \( \hbar\,\omega\) , whereas the second term describes the stimulated emission of a photon of energy \( \hbar\,\omega\) . It follows from Equations \ref{859} and \ref{860} that the rates of absorption and stimulated emission are
\( \mbox{\boldmath\)\( \cdot{\bf p} \,\vert i\rangle\vert^{\,2}\, \delta(E_n-E_i -\hbar\,\omega),\)and
\( \mbox{\boldmath\)\( \cdot{\bf p} \,\vert i\rangle\vert^{\,2}\, \delta(E_n-E_i +\hbar\,\omega),\)respectively.
Now, the energy density of a radiation field is
where \( E_0\) and \( B_0=E_0/c= 2\,A_0\,\omega/c\) are the peak electric and magnetic field-strengths, respectively. Hence,
and expressions \ref{878} and \ref{879} become
\( \mbox{\boldmath\)\( \cdot{\bf p} \,\vert i\rangle\vert^{\,2}\, \delta(E_n-E_i -\hbar\,\omega),\)and
\( \mbox{\boldmath\)\( \cdot{\bf p} \,\vert i\rangle\vert^{\,2}\, \delta(E_n-E_i +\hbar\,\omega),\)respectively. Finally, if we imagine that the incident radiation has a range of different frequencies, so that
where \( d\omega\,u(\omega)\) is the energy density of radiation whose frequency lies in the range \( \omega\) to \( \omega+d\omega\) , then we can integrate our transition rates over \( \omega\) to give
\( \mbox{\boldmath\)\( \cdot{\bf p} \,\vert i\rangle\vert^{\,2}\)for absorption, and
\( \mbox{\boldmath\)\( \cdot{\bf p} \,\vert i\rangle\vert^{\,2}\)for stimulated emission. Here, \( \omega_{ni} = (E_n-E_i)/\hbar>0\) and \( \omega_{in} = (E_i-E_n)/\hbar>0\) . Furthermore, we are assuming that the radiation is incoherent, so that intensities can be added.
Contributors
Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)
\( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)


