9.4: Partial Waves
- Page ID
- 1241
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We can assume, without loss of generality, that the incident wavefunction is characterized by a wavevector \( {\bf k}\) that is aligned parallel to the \( {\bf k}'\) that has the same magnitude as \( {\bf k}\) , but, in general, points in a different direction. The direction of \( {\bf k}'\) is specified by the polar angle \( \varphi\) about the \( V({\bf x}) = V(r)\) ] the scattering amplitude is a function of \( f(\theta, \varphi) = f(\theta).\) It follows that neither the incident wavefunction, depend on the azimuthal angle \( \phi({\bf x})\) and \( (\nabla^2 + k^2)\,\psi = 0.\) Consider the most general solution to this equation in spherical polar coordinates that does not depend on the azimuthal angle \( \psi(r,\theta) = \sum_{l=0,\infty} R_l(r)\, P_l(\cos\theta),\) since the Legendre polynomials \( \theta\) -space. The Legendre polynomials are related to the spherical harmonics introduced in Chapter 4 via The two independent solutions to this equation are the spherical Bessel function, \( \eta_l(k\,r)\) , where Note that spherical Bessel functions are well-behaved in the limit \( y\rightarrow \infty\) is We can write so we can invert the above expansion to give where \( a_l = {\rm i}^l \,(2\,l+1),\) giving where the \( B_l\) are constants. Note that the Neumann functions are allowed to appear in this expansion, because its region of validity does not include the origin. In the large-\( r\) limit, the total wavefunction reduces to where use has been made of Equations \ref{964}-\ref{965}. The above expression can also be written Equation \ref{974} yields which contains both incoming and outgoing spherical waves. What is the source of the incoming waves? Obviously, they must be part of the large-\( r\) asymptotic expansion of the incident wavefunction. In fact, it is easily seen that in the large-\( r\) limit. Now, Equations \ref{956} and \ref{957} give Clearly, determining the scattering amplitude \( \delta_l\) . Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)\ref{955} \( \psi({\bf x}) = \frac{1}{(2\pi)^{3/2}} \left[ \exp(\,{\rm i}\,k\,r\cos\theta) + \frac{\exp(\,{\rm i}\,k\,r)\, f(\theta)} {r} \right],\) \ref{957} \ref{958} \ref{959} \( r^2\frac{d^2 R_l}{dr^2} + 2\,r \frac{dR_l}{dr} + [k^2 \,r^2 - l\,(l+1)]\,R_l = 0.\) \ref{961} \( = y^l\left(-\frac{1}{y}\frac{d}{dy}\right)^l \frac{\sin y}{y},\) \ref{962} \( = -y^l\left(-\frac{1}{y}\frac{d}{dy}\right)^l \frac{\cos y}{y}.\) \ref{963} \( \rightarrow \frac{\sin(y - l\,\pi/2)}{y},\) \ref{964} \( \rightarrow - \frac{\cos(y-l\,\pi/2)}{y}.\) \ref{965} are constants. Note there are no Neumann functions in this expansion, because they are not well-behaved as \( \int_{-1}^1 d\mu\,P_n(\mu) \,P_m(\mu) = \frac{\delta_{n\,m}}{n+1/2},\) \( a_l\) \ref{967} \( j_l(y) = \frac{(-{\rm i})^l}{2} \int_{-1}^1 d\mu\, \exp(\,{\rm i}\, y\,\mu) \,P_l(\mu),\) \ref{969} \ref{970} \( \psi({\bf x}) = \frac{1}{(2\pi)^{3/2}} \sum_{l=0,\infty}\left[ A_l\,j_l(k\,r) + B_l\,\eta_l(k\,r)\right] P_l(\cos\theta),\) \ref{972} ![$ \psi ({\bf x} ) \simeq \frac{1}{(2\pi)^{3/2}} \sum_{l=0,\infty}\l...
...\pi/2)}{k\,r} - B_l\,\frac{\cos(k\,r -l\,\pi/2)}{k\,r} \right] P_l(\cos\theta),$](http://farside.ph.utexas.edu/teaching/qm/lectures/img2245.png)
\ref{973} .\( \delta_l\) ![$ \psi({\bf x}) \simeq \frac{1}{(2\pi)^{3/2}} \sum_l C_l\, \frac{\e...
...p[-{\rm i}\,(k\,r - l\,\pi/2+ \delta_l)] }{2\,{\rm i}\,k\,r}\, P_l(\cos\theta),$](http://farside.ph.utexas.edu/teaching/qm/lectures/img2248.png)
\ref{975} ![$ \phi({\bf x}) \simeq \frac{1}{(2\pi)^{3/2}} \sum_{l=0,\infty} {\r...
...i/2)] -\exp[-{\rm i}\,(k\,r - l\,\pi/2)]}{2\,{\rm i}\,k\,r} \, P_l(\cos\theta),$](http://farside.ph.utexas.edu/teaching/qm/lectures/img2249.png)
\ref{976} expansions of \( \phi({\bf x})\) must be equal. It follows from Equations \ref{975} and \ref{976} that\( r\) \( f(\theta) = \sum_{l=0,\infty} (2\,l+1)\,\frac{\exp(\,{\rm i}\,\delta_l)} {k} \,\sin\delta_l\,P_l(\cos\theta).\) \ref{979} Contributors


