Skip to main content
Physics LibreTexts

1.8: Diffuse Reflection and Transmission

  • Page ID
    8715
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A scattering layer of finite optical thickness t may be used to model e.g. a planetary ring. If we use the Lommel-Seeliger model, then the reflected radiance of such a layer may be determined by changing the upper limit of the integral in equation (20) so that

    \[L_{r}=\frac{\varpi_{0} \mathbf{F}}{4 \pi \mu} \times \int_{0}^{t} \exp \left[-\tau\left(\frac{1}{\mu_{0}}+\frac{1}{\mu}\right)\right] d \tau\]

    resulting in

    \[L_{r}=\frac{w_{0}}{4 \pi} \frac{1}{\mu+\mu_{0}} \times \left[1-\exp \left\{-t\left(\frac{1}{\mu_{0}}+\frac{1}{\mu}\right)\right\}\right] \mu_{0} \mathbf{F}\]

    For the transmitted radiance, it is readily shown that

    \[d L_{t}=\frac{\varpi_{0} \mathbf{F} e^{-\tau / \mu_{0}}}{4 \pi \mu} e^{-(t-\tau) / \mu} d \tau\]

    and in the special case \(μ = μ_0\), integration results in

    \[L_{t}=\frac{\varpi_{0} \mathbf{F} t}{4 \pi \mu_{0}} e^{-t / \mu_{0}}\]

    and otherwise

    \[L_{t}=\frac{\varpi_{0} \mathbf{F}}{4 \pi} \frac{\mu_{0}}{\mu-\mu_{0}}\left[e^{-t / \mu}-e^{-t / \mu_{0}}\right]\]

    In all cases the values of μ and μ0 are positive; some authors even explicitly put in absolute value symbols to emphasise this point!


    This page titled 1.8: Diffuse Reflection and Transmission is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Max Fairbairn & Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.