3.8: Trigonometrical Formulas
- Page ID
- 8115
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)I gather here merely for reference a set of commonly-used trigonometric formulas. It is a matter of personal preference whether to commit them to memory. It is probably fair to remark that anyone who is regularly engaged in problems in celestial mechanics or related disciplines will be familiar with most of them, at least from frequent use, whether or not any conscious effort was made to memorize them. At the very least, the reader should be aware of their existence, even if he or she has to look to recall the exact formula.
\[\frac{\sin A}{\cos A} = \tan A\]
\[\sin^2 A + \cos^2 A = 1\]
\[1+\cot^2 A = \csc^2 A\]
\[1+ \tan^2 A = \sec^2 A\]
\[\sec A \csc A = \tan A + \cot A\]
\[\sec^2 A \csc^2 A = \sec^2 A + \csc^2 A\]
\[\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B\]
\[\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B\]
\[\tan (A \pm B ) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\]
\[\sin 2A = 2 \sin A \cos A \]
\[\cos 2 A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A \]
\[\tan 2 A = \frac{2 \tan A}{1 - \tan^2 A}\]
\[\sin \frac{1}{2} A = \sqrt{\frac{1-\cos A}{2}}\]
\[\cos \frac{1}{2} A = \sqrt{\frac{1+\cos A}{2}}\]
\[\tan \frac{1}{2} A = \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac{1-\cos A}{\sin A} = \frac{\sin A}{A + \cos A} = \csc A - \cot A\]
\[\sin A + \sin B = 2 \sin \frac{1}{2} S \cos \frac{1}{2} D, \]
where \[S = A + B \quad \text{and} \quad D = A-B\]
\[\sin A - \sin B = 2 \cos \frac{1}{2} S \sin \frac{1}{2} D\]
\[\cos A + \cos B = 2\cos \frac{1}{2} S \cos \frac{1}{2} D\]
\[\cos A - \cos B = -2 \sin \frac{1}{2} S \sin \frac{1}{2} D\]
\[\sin A \sin B = \frac{1}{2} (\cos D - \cos S)\]
\[\cos A \cos B = \frac{1}{2} (\cos D + \cos S)\]
\[\sin A \cos B = \frac{1}{2} ( \sin S + \sin D)\]
\[\sin A = \frac{T}{\sqrt{1+T^2}} = \frac{2T}{1+t^2},\]
where \[T = \tan A \text{ and } t = \tan \frac{1}{2} A\]
\[\cos A = \frac{1}{\sqrt{1+T^2}} = \frac{1-t^2}{1+t^2}\]
\[\tan A = T = \frac{2t}{1-t^2}\]
\[s = \sin A, \quad c = \cos A\]
\begin{array}{l l}
\cos A = c & \sin A = s \\
\cos 2 A = 2c^2 - 1 & \sin 2 A = 2cs \\
\cos 3 A = 4c^3 - 3c & \sin 3 A = 3s - 4s^3 \\
\cos 4 A = 8c^4 - 8c^2 + 1 & \sin 4 A = 4c(s - 2s^3) \\
\cos 5 A = 16c^5 - 20c^3 + 5c & \sin 5A = 5s - 20s^3 + 16s^5 \\
\cos 6 A = 32c^6 - 48c^4 + 18c^2 - 1 & \sin 6 A = 2c(3s - 16s^3 + 16s^5) \\
\cos 7 A = 64c^7 - 112c^5 + 56c^3 - 7c & \sin 7 A = 7s - 56s^3 + 112s^5 - 64s^7 \\
\cos 8A = 128 c^8 - 256c^6 + 160c^4 -32c^2 + 1 & \sin 8A = 8c(s-10s^3 + 24s^5 - 16s^7) \\
\end{array}
\begin{array}{l}
\cos^2 A = \frac{1}{2} (\cos 2A + 1) \\
\cos^3 A = \frac{1}{4} (\cos 3A + 3 \cos A) \\
\cos^4 A = \frac{1}{8} (\cos 4A + 4 \cos 2A + 3 ) \\
\cos^5 A = \frac{1}{16} (\cos 5A + 5 \cos 3A + 10 \cos A ) \\
\cos^6 A = \frac{1}{32} (\cos 6A + 6 \cos 4A + 15 \cos 2A + 10 ) \\
\cos^7 A = \frac{1}{64} (\cos 7A + 7 \cos 5A + 21 \cos 3A + 35 \cos A ) \\
\cos^8 A = \frac{1}{128} (\cos 8A + 8 \cos 6A + 28 \cos 4A + 56 \cos 2A + 35) \\
\end{array}
\begin{array}{l}
\sin^2 A = \frac{1}{2} (1-\cos 2A) \\
\sin^3 A = \frac{1}{4} (3\sin A - \sin 3A) \\
\sin^4 A = \frac{1}{8} (\cos 4A - 4 \cos 2A + 3 ) \\
\sin^5 A = \frac{1}{16} (\sin 5A - 5\sin 3A + 10 \sin A) \\
\sin^6 A = \frac{1}{32} (10 - 15 \cos 2A + 6\cos 4A - \cos 6A) \\
\sin^7 A = \frac{1}{64} (35 \sin A - 21 \sin 3A + 7\sin 5A - \sin 7A ) \\
\sin^8 A = \frac{1}{128} (\cos 8A - 8 \cos 6A + 28 \cos 4A - 56 \cos 2A + 35) \\
\end{array}
\[\sin A = A - \frac{A^3}{3!} + \frac{A^5}{5!} - ...\]
\[\cos A = 1 - \frac{A^2}{2!} + \frac{A^4}{4!} - ...\]
\begin{array}{c c}
\int_0^{\pi/2} \sin^m θ \cos^n θ dθ = \frac{(m-1)!!(n-1)!!X}{(m+n)!!}, & \text{where } X=\pi/2 \text{ if } m \text{ and } n \text{ are both even, and } \\ & X=1 \text{ otherwise}. \\
\end{array}
\(e^{niθ} = e^{inθ}\) (de Moivre's theorem - the only one you need know. All others can be deduced from it.)
Plane triangles:
\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\]
\[a^2 = b^2 + c^2 -2bc \cos A\]
\[a \cos B + b \cos A = c\]
\[s = \frac{1}{2} (a+b+c)\]
\[\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\]
\[\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}\]
\[\tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\]
Spherical triangles
\[\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}\]
\[\cos a = \cos b \cos c + \sin b \sin c \cos A\]
\[\cos A = -\cos B \cos C + \sin B \sin C \cos a\]
\[\cos (\text{IS}) \cos (\text{IA}) = \sin (\text{IS}) \cot (\text{OS}) - \sin (\text{IA}) \cot (\text{OA})\]


