# 9.5: Exercise Problems

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

9.1. Generalize the reasoning of Sec. 1 to an arbitrary 1D map $$q_{n+1}=f\left(q_{n}\right)$$, with a function $$f(q)$$ differentiable at all points of interest. In particular, derive the condition of stability of an $$N$$-point limit cycle $$q^{(1)} \rightarrow q^{(2)} \rightarrow \ldots \rightarrow q^{(N)} \rightarrow q^{(1)} \ldots$$

9.2. Use the stability condition, derived in the previous problem, to analyze the possibility of the deterministic chaos in the so-called tent map, with $f(q)=\left\{\begin{array}{ll} r q, & \text { for } 0 \leq q \leq 1 / 2, \\ r(1-q), & \text { for } 1 / 2 \leq q \leq 1, \end{array} \quad \text { with } 0 \leq r \leq 2\right.$ 9.3. A dynamic system is described by the following system of differential equations: \begin{aligned} &\dot{q}_{1}=-q_{1}+a_{1} q_{2}^{3}, \\ &\dot{q}_{2}=a_{2} q_{2}-a_{3} q_{2}^{3}+a_{4} q_{2}\left(1-q_{1}^{2}\right) . \end{aligned} Can it exhibit chaos at some set of constant parameters $$a_{1}-a_{4}$$ ?

9.4. A periodic function of time has been added to the right-hand side of the first equation of the system considered in the previous problem. Is deterministic chaos possible now?

This page titled 9.5: Exercise Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.