Skip to main content
Physics LibreTexts

5.3: The Virial Theorem

  • Page ID
    29556
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a potential energy homogeneous in the coordinates, of degree \(\begin{equation}k\end{equation}\), say, and spatially bounded motion, there is a simple relation between the time averages of the kinetic energy, \(\begin{equation}\bar{T}, \text { and potential energy, } \bar{U} \end{equation}\). It’s called the virial theorem.

    Theorem \(\PageIndex{1}\): Virial Theorem

    \[ 2 \bar{T}=k \bar{U}\]

    Proof

    Since

    \[ T=\sum_{i} \frac{1}{2} m_{i} \vec{v}_{i}^{2}, \quad \vec{p}_{i}=m_{i} \vec{v}_{i}=\partial T / \partial \vec{v}_{i}\]

    we have

    \[ 2 T=\sum_{i} \vec{p}_{i} \cdot \vec{v}_{i}=\frac{d}{d t}\left(\sum_{i} \vec{p}_{i} \cdot \vec{r}_{i}\right)-\sum_{i} \vec{r}_{i} \cdot \dot{\vec{p}}_{i}\]

    We now average the terms in this equation over a very long time, that is, take

    \[ \bar{f}=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} f(t) d t\]

    Since we’ve said the orbits are bounded in space, and we assume also in momentum, the exact differential term contributes

    \[ \frac{1}{\tau}\left[\left(\sum_{i} \vec{p}_{i} \cdot \vec{r}_{i}\right)_{\text {at final }}-\left(\sum_{i} \vec{p}_{i} \cdot \vec{r}_{i}\right)_{\text {at initial }}\right] \rightarrow 0 \]

    in the limit of infinite time.

    So we have the time averaged

    \[2 \bar{T}=\sum_{i} \vec{r}_{i} \cdot \partial U / \partial \vec{r}_{i} \]

    and for a potential energy a homogeneous function of degree \(k\) in the coordinates, from Euler’s theorem:

    \[ 2 \bar{T}=k \bar{U}\]

    So, for example, in a simple harmonic oscillator the average kinetic energy equals the average potential energy, and for an inverse-square system, the average kinetic energy is half the average potential energy in magnitude, and of opposite sign (being of course positive).


    This page titled 5.3: The Virial Theorem is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?