Skip to main content
Physics LibreTexts

6.9: A Simple Example

  • Page ID
    30187
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a particle moving in a potential in one dimension, \(\begin{equation}
    L(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}-V(q)
    \end{equation}\).

    Hence

    \begin{equation}
    p=\frac{\partial L}{\partial \dot{q}}=m \dot{q}, \quad \dot{q}=\frac{p}{m}
    \end{equation}

    Therefore

    \begin{equation}
    \begin{array}{c}
    H=p \dot{q}-L=p \dot{q}-\frac{1}{2} m \dot{q}^{2}+V(q) \\
    =\frac{p^{2}}{2 m}+V(q)
    \end{array}
    \end{equation}

    (Of course, this is just the total energy, as we expect.)

    The Hamiltonian equations of motion are

    \begin{equation}
    \begin{array}{l}
    \dot{q}=\frac{\partial H}{\partial p}=\frac{p}{m} \\
    \dot{p}=-\frac{\partial H}{\partial q}=-V^{\prime}(q)
    \end{array}
    \end{equation}

    So, as we’ve said, the second order Lagrangian equation of motion is replaced by two first order Hamiltonian equations. Of course, they amount to the same thing (as they must!): differentiating the first equation and substituting in the second gives immediately \(\begin{equation}
    -V^{\prime}(q)=m \ddot{q}, \text { that is, } F=m a
    \end{equation}\), the original Newtonian equation (which we derived earlier from the Lagrange equations).


    This page titled 6.9: A Simple Example is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?