Skip to main content
Physics LibreTexts

7.1: The Poisson Bracket

  • Page ID
    29568
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A function \(\begin{equation}
    f(p, q, t)
    \end{equation}\) of the phase space coordinates of the system and time has total time derivative

    \begin{equation}
    \dfrac{d f}{d t}=\dfrac{\partial f}{\partial t}+\sum_{i}\left(\dfrac{\partial f}{\partial q_{i}} \dot{q}_{i}+\dfrac{\partial f}{\partial p_{i}} \dot{p}_{i}\right)
    \end{equation}

    This is often written as

    \begin{equation}
    \dfrac{d f}{d t}=\dfrac{\partial f}{\partial t}+[H, f]
    \end{equation}

    where

    \[[H, f]=\sum_{i}\left(\dfrac{\partial H}{\partial p_{i}} \dfrac{\partial f}{\partial q_{i}}-\dfrac{\partial H}{\partial q_{i}} \dfrac{\partial f}{\partial p_{i}}\right) \label{PoissonBracket}\]

    is called the Poisson bracket.

    Caution

    Equation \ref{PoissonBracket} is Landau's definition for the Poisson bracket. It differs in sign from Goldstein, Wikipedia and others.

    If, for a phase space function \(\begin{equation}
    f\left(p_{i}, q_{i}\right)
    \end{equation}\) (that is, no explicit time dependence) \(\begin{equation}
    [H, f]=0, \text { then } f\left(p_{i}, q_{i}\right)
    \end{equation}\) is a constant of the motion, also called an integral of the motion.

    In fact, the Poisson bracket can be defined for any two functions defined in phase space:

    \begin{equation}
    [f, g]=\sum_{i}\left(\dfrac{\partial f}{\partial p_{i}} \dfrac{\partial g}{\partial q_{i}}-\dfrac{\partial f}{\partial q_{i}} \dfrac{\partial g}{\partial p_{i}}\right)
    \end{equation}

    It’s straightforward to check the following properties of the Poisson bracket:

    \begin{equation}
    \begin{aligned}
    &[f, g]=-[g, f]\\
    &[f, c]=0 \text { for } c \text { a constant }\\
    &\left[f_{1}+f_{2}, g\right]=\left[f_{1}, g\right]+\left[f_{2}, g\right]\\
    &\left[f_{1} f_{2}, g\right]=f_{1}\left[f_{2}, g\right]+\left[f_{1}, g\right] f_{2}\\
    &\dfrac{\partial}{\partial t}[f, g]=\left[\dfrac{\partial f}{\partial t}, g\right]+\left[f, \dfrac{\partial g}{\partial t}\right]
    \end{aligned}
    \end{equation}

    The Poisson brackets of the basic variables are easily found to be:

    \begin{equation}
    \left[q_{i}, q_{k}\right]=0, \quad\left[p_{i}, p_{k}\right]=0, \quad\left[p_{i}, q_{k}\right]=\delta_{i k}
    \end{equation}

    Now, using

    \begin{equation}
    \left[f_{1} f_{2}, g\right]=f_{1}\left[f_{2}, g\right]+\left[f_{1}, g\right] f_{2}
    \end{equation}

    and the basic variable P.B.’s, we find

    \begin{equation}
    \left[p, q^{2}\right]=2 q,\left[p, q^{3}\right]=3 q^{2}
    \end{equation}

    and, in fact, the bracket of p with any reasonably smooth function of q is:

    \begin{equation}
    [p, f(q)]=d f / d q
    \end{equation}


    This page titled 7.1: The Poisson Bracket is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.