Skip to main content
Physics LibreTexts

7.1: The Poisson Bracket

  • Page ID
    29568
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A function \(\begin{equation}
    f(p, q, t)
    \end{equation}\) of the phase space coordinates of the system and time has total time derivative

    \begin{equation}
    \frac{d f}{d t}=\frac{\partial f}{\partial t}+\sum_{i}\left(\frac{\partial f}{\partial q_{i}} \dot{q}_{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i}\right)
    \end{equation}

    This is often written as

    \begin{equation}
    \frac{d f}{d t}=\frac{\partial f}{\partial t}+[H, f]
    \end{equation}

    where

    \[[H, f]=\sum_{i}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}-\frac{\partial H}{\partial q_{i}} \frac{\partial f}{\partial p_{i}}\right) \label{PoissonBracket}\]

    is called the Poisson bracket.

    Caution

    Equation \ref{PoissonBracket} is Landau's definition for the Poisson bracket. It differs in sign from Goldstein, Wikipedia and others.

    If, for a phase space function \(\begin{equation}
    f\left(p_{i}, q_{i}\right)
    \end{equation}\) (that is, no explicit time dependence) \(\begin{equation}
    [H, f]=0, \text { then } f\left(p_{i}, q_{i}\right)
    \end{equation}\) is a constant of the motion, also called an integral of the motion.

    In fact, the Poisson bracket can be defined for any two functions defined in phase space:

    \begin{equation}
    [f, g]=\sum_{i}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}\right)
    \end{equation}

    It’s straightforward to check the following properties of the Poisson bracket:

    \begin{equation}
    \begin{aligned}
    &[f, g]=-[g, f]\\
    &[f, c]=0 \text { for } c \text { a constant }\\
    &\left[f_{1}+f_{2}, g\right]=\left[f_{1}, g\right]+\left[f_{2}, g\right]\\
    &\left[f_{1} f_{2}, g\right]=f_{1}\left[f_{2}, g\right]+\left[f_{1}, g\right] f_{2}\\
    &\frac{\partial}{\partial t}[f, g]=\left[\frac{\partial f}{\partial t}, g\right]+\left[f, \frac{\partial g}{\partial t}\right]
    \end{aligned}
    \end{equation}

    The Poisson brackets of the basic variables are easily found to be:

    \begin{equation}
    \left[q_{i}, q_{k}\right]=0, \quad\left[p_{i}, p_{k}\right]=0, \quad\left[p_{i}, q_{k}\right]=\delta_{i k}
    \end{equation}

    Now, using

    \begin{equation}
    \left[f_{1} f_{2}, g\right]=f_{1}\left[f_{2}, g\right]+\left[f_{1}, g\right] f_{2}
    \end{equation}

    and the basic variable P.B.’s, we find

    \begin{equation}
    \left[p, q^{2}\right]=2 q,\left[p, q^{3}\right]=3 q^{2}
    \end{equation}

    and, in fact, the bracket of p with any reasonably smooth function of q is:

    \begin{equation}
    [p, f(q)]=d f / d q
    \end{equation}


    This page titled 7.1: The Poisson Bracket is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.