Skip to main content
Physics LibreTexts

10.4: Generating Functions in Different Variables

  • Page ID
    29459
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    This \(\begin{equation}
    F(q, Q, t)
    \end{equation}\) is only one example of a generating function—in discussing Liouville’s theorem later, we’ll find it convenient to have a generating function expressed in the q 's and P 's. We get that generating function, often labeled \(\begin{equation}
    \Phi(q, P, t), \text { from } F(q, Q, t)
    \end{equation}\) by a Legendre transformation:

    \begin{equation}
    d \Phi(q, P, t)=d\left(F+\sum P_{i} Q_{i}\right)=\sum p_{i} d q_{i}+\sum Q_{i} d P_{i}+\left(H^{\prime}-H\right) d t
    \end{equation}

    Then, for this new generating function

    \begin{equation}
    p_{i}=\frac{\partial \Phi(q, P, t)}{\partial q_{i}}, \quad Q_{i}=\frac{\partial \Phi(q, P, t)}{\partial P_{i}}, \quad H^{\prime}=H+\frac{\partial \Phi(q, P, t)}{\partial t}
    \end{equation}

    Evidently, we can similarly use the Legendre transform to find generating functions depending on the other possible mixes of old and new variables: p,Q, and p,P.

    What’s the Point of These Canonical Transformations?

    It will become evident with a few examples: it is often possible to transform to a set of variables where the equations of motion are a lot simpler, and, for some variables, trivial. The canonical approach also gives a neat proof of Liouville’s theorem, which we’ll look at shortly.


    This page titled 10.4: Generating Functions in Different Variables is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?