17.5: Three Coupled Pendulums
- Page ID
- 29509
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let’s now move on to the case of three equal mass coupled pendulums, the middle one connected to the other two, but they’re not connected to each other.
The Lagrangian is
\begin{equation}
L=\dfrac{1}{2} m \ell^{2} \dot{\theta}_{1}^{2}+\dfrac{1}{2} m \ell^{2} \dot{\theta}_{2}^{2}+\dfrac{1}{2} m \ell^{2} \dot{\theta}_{3}^{2}-\dfrac{1}{2} m g \ell \theta_{1}^{2}-\dfrac{1}{2} m g \ell \theta_{2}^{2}-\dfrac{1}{2} m g \ell \theta_{3}^{2}-\dfrac{1}{2} C\left(\theta_{1}-\theta_{2}\right)^{2}-\dfrac{1}{2} C\left(\theta_{3}-\theta_{2}\right)^{2}
\end{equation}
Putting \(\omega_{0}^{2}=g / \ell, \quad k=C / m \ell^{2}\)
\(\begin{equation}
L=\dfrac{1}{2} \dot{\theta}_{1}^{2}+\dfrac{1}{2} \dot{\theta}_{2}^{2}+\dfrac{1}{2} \dot{\theta}_{3}^{2}-\dfrac{1}{2} \omega_{0}^{2} \theta_{1}^{2}-\dfrac{1}{2} \omega_{0}^{2} \theta_{2}^{2}-\dfrac{1}{2} \omega_{0}^{2} \theta_{3}^{2}-\dfrac{1}{2} k\left(\theta_{1}-\theta_{2}\right)^{2}-\dfrac{1}{2} k\left(\theta_{3}-\theta_{2}\right)^{2}
\end{equation}\)
The equations of motion are
\begin{equation}
\begin{array}{l}
\ddot{\theta}_{1}=-\omega_{0}^{2} \theta_{1}-k\left(\theta_{1}-\theta_{2}\right) \\
\ddot{\theta}_{2}=-\omega_{0}^{2} \theta_{2}-k\left(\theta_{2}-\theta_{1}\right)-k\left(\theta_{2}-\theta_{3}\right) \\
\ddot{\theta}_{3}=-\omega_{0}^{2} \theta_{3}-k\left(\theta_{3}-\theta_{2}\right)
\end{array}
\end{equation}
Putting \(\theta_{i}(t)=A_{i} e^{i \omega t}\), the equations can be written in matrix form
\begin{equation}
\left(\begin{array}{ccc}
\omega_{0}^{2}+k & -k & 0 \\
-k & \omega_{0}^{2}+2 k & -k \\
0 & -k & \omega_{0}^{2}+k
\end{array}\right)=\omega_{0}^{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+k\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
\end{equation}
The normal modes of oscillation are given by the eigenstates of that second matrix.
The one obvious normal mode is all the pendulums swinging together, at the original frequency \(\omega_{0}\), so the springs stay at the rest length and play no role. For this mode, evidently the second matrix has a zero eigenvalue, and eigenvector (1,1,1).
The full eigenvalue equation is
\begin{equation}
\left|\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 1-\lambda
\end{array}\right|=0
\end{equation}
that is,
\begin{equation}
(1-\lambda)^{2}(2-\lambda)-2(1-\lambda)=0=(1-\lambda)[(1-\lambda)(2-\lambda)-2]=(1-\lambda)\left(\lambda^{2}-3 \lambda\right)
\end{equation}
so the eigenvalues are \(\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=3\), with frequencies
\begin{equation}
\omega_{1}^{2}=\omega_{0}^{2}, \omega_{2}^{2}=\omega_{0}^{2}+k, \omega_{3}^{2}=\omega_{0}^{2}+3 k
\end{equation}
The normal mode eigenvectors satisfy
\begin{equation}
\left(\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 1-\lambda
\end{array}\right)\left(\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)=0
\end{equation}
They are \((1,1,1) / \sqrt{3}, \quad(1,0,-1) / \sqrt{2}, \quad(1,-2,1) / \sqrt{6}\), normalizing them to unity.
The equations of motion are linear, so the general solution is a superposition of the normal modes:
\begin{equation}
\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right)=\dfrac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \operatorname{Re}\left(C_{1} e^{i \omega_{1} t}\right)+\dfrac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \operatorname{Re}\left(C_{2} e^{i \omega_{2} t}\right)+\dfrac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \operatorname{Re}\left(C_{3} e^{i \omega_{3} t}\right)
\end{equation}


