Skip to main content
Physics LibreTexts

17.6: Normal Coordinates

  • Page ID
    29510
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Landau writes \(Q_{\alpha}=\operatorname{Re} C_{\alpha} e^{i \omega_{\alpha} t}\). (Actually he brings in an intermediate variable \(\Theta_{\alpha}\), but we'll skip that.) These “normal coordinates” can have any amplitude and phase, but oscillate at a single frequency \(\ddot{Q}_{\alpha}=-\omega_{\alpha}^{2} Q_{\alpha}\).

    The components of the above vector equation read:

    \begin{equation}
    \begin{array}{l}
    \theta_{1}=Q_{1} / \sqrt{3}+Q_{2} / \sqrt{2}+Q_{3} / \sqrt{6} \\
    \theta_{2}=Q_{1} / \sqrt{3}-2 Q_{3} / \sqrt{6} \\
    \theta_{3}=Q_{1} / \sqrt{3}-Q_{2} / \sqrt{2}+Q_{3} / \sqrt{6}
    \end{array}
    \end{equation}

    It’s worth going through the exercise of writing the Lagrangian in terms of the normal coordinates:

    recall the Lagrangian:

    \begin{equation}
    L=\frac{1}{2} \dot{\theta}_{1}^{2}+\frac{1}{2} \dot{\theta}_{2}^{2}+\frac{1}{2} \dot{\theta}_{3}^{2}-\frac{1}{2} \omega_{0}^{2} \theta_{1}^{2}-\frac{1}{2} \omega_{0}^{2} \theta_{2}^{2}-\frac{1}{2} \omega_{0}^{2} \theta_{3}^{2}-\frac{1}{2} k\left(\theta_{1}-\theta_{2}\right)^{2}-\frac{1}{2} k\left(\theta_{3}-\theta_{2}\right)^{2}
    \end{equation}

    Putting in the above expressions for the \(\theta_{\alpha}\), after some algebra

    \begin{equation}
    L=\frac{1}{2}\left[\dot{Q}_{1}^{2}-\omega_{0}^{2} Q_{1}^{2}\right]+\frac{1}{2}\left[\dot{Q}_{2}^{2}-\left(\omega_{0}^{2}+k\right) Q_{2}^{2}\right]+\frac{1}{2}\left[\dot{Q}_{3}^{2}-\left(\omega_{0}^{2}+3 k\right) Q_{3}^{2}\right]
    \end{equation}

    We’ve achieved a separation of variables. The Lagrangian is manifestly a sum of three simple harmonic oscillators, which can have independent amplitudes and phases. Incidentally, this directly leads to the action angle variables -- recall that for a simple harmonic oscillator the action \(I=E / \omega\), and the angle is that of rotation in phase space.


    This page titled 17.6: Normal Coordinates is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?