Skip to main content
Physics LibreTexts

20.3: Example- Pendulum Driven at near Double the Natural Frequency

  • Page ID
    29535
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A simple pendulum of length \(ℓ\), mass \(m\) is attached to a point which oscillates vertically \(y=a \cos \Omega t\). Measuring \(y\) downwards, the pendulum position is

    \begin{equation}
    x=\ell \sin \phi, y=a \cos \Omega t+\ell \cos \phi
    \end{equation}

    The Lagrangian

    \begin{equation}
    \begin{array}{c}
    L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+m g \ell \cos \phi \\
    =\frac{1}{2} m\left(\ell^{2} \cos ^{2} \phi\right) \dot{\phi}^{2}+\frac{1}{2} m(a \Omega \sin \Omega t+\ell \dot{\phi} \sin \phi)^{2}+m g \ell \cos \phi \\
    =\frac{1}{2} m \ell^{2} \dot{\phi}^{2}-m a \ell \Omega \sin \Omega t \frac{d}{d t} \cos \phi+a^{2} \Omega^{2} \sin ^{2} \Omega t+m g \ell \cos \phi
    \end{array}
    \end{equation}

    The purely time-dependent term will not affect the equations of motion, so we drop it, and since the equations are not affected by adding a total derivative to the Lagrangian, we can integrate the second term by parts (meaning we’re dropping a term \(\begin{equation}
    \left.\frac{d}{d t}(\operatorname{mal} \Omega \sin \Omega t \cos \phi)\right)
    \end{equation}\) to get

    \begin{equation}
    L=\frac{1}{2} m \ell^{2} \dot{\phi}^{2}+m a \ell \Omega^{2} \cos \Omega t \cos \phi+m g \ell \cos \phi
    \end{equation}

    (We’ve also dropped the term \(\begin{equation}
    m g a \cos \Omega t
    \end{equation}\) from the potential energy term—it has no \(\phi \text { or } \dot{\phi}\) dependence, so will not affect the equations of motion.)

    The equation for small oscillations is

    \begin{equation}
    \ddot{\phi}+\omega_{0}^{2}\left[1+(4 a / \ell) \cos \left(2 \omega_{0}+\varepsilon\right) t\right] \phi=0, \quad \omega_{0}^{2}=g / \ell
    \end{equation}

    Comparing this with

    \begin{equation}
    \ddot{x}+\omega_{0}^{2}\left[1+h \cos \left(2 \omega_{0}+\varepsilon\right) t\right] x=0
    \end{equation}

    we see that \(4 a / \ell \equiv h\), so the parametric resonance range around \(2 \omega_{0}=2 \sqrt{g / \ell} \text { is of width } \frac{1}{2} h \omega_{0}=2 a \sqrt{g / \ell^{3}}\).


    This page titled 20.3: Example- Pendulum Driven at near Double the Natural Frequency is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?