Skip to main content
Physics LibreTexts

24.10: Relating Angular Momentum to Angular Velocity

  • Page ID
    30521
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    It’s easy to check that the angular momentum vector is

    \(L_{i}=I_{i j} \Omega_{j}\)

    since

    \begin{equation}
    \mathbf{L}=\sum \vec{r}_{n} \times m_{n} \vec{v}_{n}=\sum m_{n} \vec{r}_{n} \times\left(\vec{\Omega} \times \vec{r}_{n}\right)=\vec{\Omega} \sum m_{n} r_{n}^{2}-\sum m_{n} \vec{r}_{n}\left(\vec{\Omega} \cdot \vec{r}_{n}\right)=\mathbf{I} \vec{\Omega}
    \end{equation}

    Exercise: verify this by putting in all the suffixes.


    This page titled 24.10: Relating Angular Momentum to Angular Velocity is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?