$$\require{cancel}$$

# 12.5: Newton’s Law of Motion in a Non-Inertial Frame

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

The acceleration of the system in the rotating inertial frame can be derived by differentiating the general velocity relation for $$\mathbf{v}$$, Equation $$12.4.4$$, in the fixed frame basis which gives

\begin{align} \mathbf{a}_{fix} &= \left(\frac{d\mathbf{v}_{fix}}{dt}\right)_{fixed} \\[4pt] &= \left(\frac{d\mathbf{V}_{fix}}{dt}\right)_{fixed} + \left(\frac{d\mathbf{v}^{\prime\prime}_{rot}}{dt}\right)_{fixed} + \left(\frac{d\omega}{dt}\right)_{fixed} \times \mathbf{r}^{\prime}_{mov} + \omega \times \left(\frac{d\mathbf{r}^{\prime}_{mov}}{dt}\right)_{fixed} \label{12.22} \end{align}

Now we wish to use the general transformation to a rotating frame basis which requires inclusion of the time dependence of the unit vectors in the rotating frame, that is,

\begin{align} \left(\frac{d\mathbf{v}^{\prime\prime}_{rot}}{dt}\right)_{fixed} &= \left(\frac{d\mathbf{v}^{\prime\prime}_{rot}}{dt}\right)_{rotating} + \omega \times \mathbf{v}^{\prime\prime}_{rot} \label{12.23} \\[4pt] \left(\frac{d\omega}{dt}\right)_{fixed} \times \mathbf{r}^{\prime}_{mov} &= \left(\frac{d\omega}{dt}\right)_{rot} \times \mathbf{r}^{\prime}_{mov} \label{12.24} \\[4pt] \omega \times \left(\frac{d\mathbf{r}^{\prime}_{mov}}{dt}\right)_{fixed} &= \omega \times \mathbf{v}^{\prime\prime}_{rot} + \omega \times (\omega \times \mathbf{r}^{\prime}_{mov}) \label{12.25} \end{align}

Using Equations \ref{12.23}, \ref{12.24}, \ref{12.25} gives

$\mathbf{a}_{fix} = \mathbf{A}_{fix} + \mathbf{a}^{\prime\prime}_{rot} + 2\omega \times \mathbf{v}^{\prime\prime}_{rot} + \omega \times (\omega \times \mathbf{r}^{\prime}_{mov}) + \dot{\omega} \times \mathbf{r}^{\prime}_{mov} \label{12.26}$

where the acceleration in the rotating frame is $$\mathbf{a}^{\prime\prime}_{rot} = \left(\frac{d\mathbf{v}^{\prime\prime}_{rot}}{dt}\right)_{rot}$$ while the velocity is $$\mathbf{v}^{\prime\prime}_{rot} = \left(\frac{\mathbf{r}^{\prime\prime}_{rot}}{dt}\right)_{rot}$$ and $$\mathbf{A}_{fix}$$ is with respect to the fixed frame.

Newton’s laws of motion are obeyed in the inertial frame, that is

\begin{align} \mathbf{F}_{fix} &= m\mathbf{a}_{fix} \\[4pt] &= m(\mathbf{A}_{fix} + \mathbf{a}^{\prime\prime}_{rot} + 2\omega \times \mathbf{v}^{\prime\prime}_{rot} + \omega \times (\omega \times \mathbf{r}^{\prime}_{mov}) + \dot{\omega} \times \mathbf{r}^{\prime}_{mov}) \label{12.27} \end{align}

In the double-primed frame, which may be both rotating and accelerating in translation, one can ascribe an effective force $$\mathbf{F}^{eff}_{rot}$$ that obeys an effective Newton’s law for the acceleration $$\mathbf{a}^{\prime\prime}_{rot}$$ in the rotating frame

\begin{align}\mathbf{F}^{eff}_{rot} &= m\mathbf{a}^{\prime\prime}_{rot} \\[4pt] &= \mathbf{F}_{fix} - m(\mathbf{A}_{fix} + 2\omega \times \mathbf{v}^{\prime\prime}_{rot} + \omega \times (\omega \times \mathbf{r}^{\prime}_{mov}) + \dot{\omega} \times \mathbf{r}^{\prime}_{mov}) \label{12.28} \end{align}

Note that the effective force $$\mathbf{F}^{eff}_{rot}$$ comprises the physical force $$\mathbf{F}_{fixed}$$ minus four non-inertial forces that are introduced to correct for the fact that the rotating reference frame is a non-inertial frame.

This page titled 12.5: Newton’s Law of Motion in a Non-Inertial Frame is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.