2.5: Exercises
- Page ID
- 34523
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
Show that if a function is differentiable, then it is also continuous.
Exercise \(\PageIndex{2}\)
Prove that the derivative of \(\ln(x)\) is \(1/x\).
- Answer
-
If \(y = \ln(x)\), it follows from the definition of the logarithm that \[\exp(y) = x.\] Taking \(d/dx\) on both sides, and using the product rule, gives \[\frac{dy}{dx} \, \exp(y) = 1 \;\;\; \Rightarrow \frac{dy}{dx} = \frac{1}{\exp(y)} = \frac{1}{x}.\]
Exercise \(\PageIndex{3}\)
Using the definition of non-natural powers, prove that \[\frac{d}{dx} [x^y] = y x^{y-1}, \quad\mathrm{for}\;\;x \in \mathbb{R}^+, \; y \notin \mathbb{N}.\]
Exercise \(\PageIndex{4}\)
Consider \(f(x) = \tanh(\alpha x)\).
- Sketch \(f(x)\) versus \(x\), for two cases: (i) \(\alpha = 1\) and (ii) \(\alpha \gg 1\).
- Sketch the derivative function \(f'(x)\) for the two cases, based on your sketches in part (A) (i.e., without evaluating the derivative directly).
- Evaluate the derivative function, and verify that the result matches your sketches in part (B).
Exercise \(\PageIndex{5}\)
Prove geometrically that the derivatives of the sine and cosine functions are: \[\frac{d}{dx}\sin(x) = \cos(x), \quad\frac{d}{dx}\cos(x) = -\sin(x).\] Hence, derive their Taylor series, Eqs. (2.2.5) and (2.2.6).
Exercise \(\PageIndex{6}\)
For each of the following functions, derive the Taylor series around \(x = 0\):
- \(f(x) = \ln\left[\alpha \cos(x)\right]\), to the first 3 non-vanishing terms.
- \(f(x) = \cos\left[\pi\exp(x)\right]\), to the first 4 non-vanishing terms.
- \(\displaystyle f(x) = \frac{1}{\sqrt{1 \pm x}}\), to the first 4 non-vanishing terms. Keep track of the signs (i.e., \(\pm\) versus \(\mp\)).
Exercise \(\PageIndex{7}\)
For each of the following functions, sketch the graph and state the domains over which the function is differentiable:
- \(f(x) = |\sin(x)|\)
- \(f(x) = \left[\tan(x)\right]^2\)
- \(\displaystyle f(x) = \frac{1}{1-x^2}\)
Exercise \(\PageIndex{8}\)
Let \(\vec{v}(x)\) be a vectorial function which takes an input \(x\) (a number), and gives an output value \(\vec{v}\) that is a 2-component vector. The derivative of this vectorial function is defined in terms of the derivatives of each vector component: \[\vec{v}(x) = \begin{bmatrix}v_1(x) \\ v_2(x)\end{bmatrix} \;\; \Rightarrow \;\; \frac{d\vec{v}}{dx} = \begin{bmatrix}dv_1/dx \\ dv_2/dx\end{bmatrix}.\] Now suppose \(\vec{v}(x)\) obeys the vectorial differential equation \[\frac{d\vec{v}}{dx} = \mathbf{A} \vec{v},\] where \[\mathbf{A} = \begin{bmatrix}A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix}\] is a matrix that has two distinct real eigenvectors with real eigenvalues.
- How many independent numbers do we need to specify for the general solution?
- Let \(\vec{u}\) be one of the eigenvectors of \(\mathbf{A}\), with eigenvalue \(\lambda\): \[\mathbf{A} \vec{u} = \lambda \vec{u}.\] Show that \(\vec{v}(x) = \vec{u}\, e^{\lambda x}\) is a specific solution to the vectorial differential equation. Hence, find the general solution.
- Answer
-
For an ordinary differential equation for a scalar (one-component) function of order \(n\), the general solution must contain \(n\) independent variables. In this case, \(\vec{v}\) is a two-component function, so it requires \(2n\) indpendent variables. The differential equation \[\frac{d\vec{v}}{dx} = \mathbf{A} \vec{v}\] has order \(n = 1\), so a total of 2 independent variables is required for the general solution.
Let \(u\) be an eigenvector of \(\mathbf{A}\) with eigenvalue \(\lambda\), and suppose that \(\vec{v}(x) = \vec{u}\,e^{\lambda x}\) (note that \(\vec{u}\) itself does not depend on \(x\)). Then \[\begin{align} \frac{d\vec{v}}{dx} &= \vec{u} \frac{d}{dx}\left(e^{\lambda x}\right) \\ &= \lambda \, \vec{u}\, e^{\lambda x} \\ &= \left(\mathbf{A} \vec{u}\right) e^{\lambda x} \\ &= \mathbf{A} \left(\vec{u} e^{\lambda x}\right) \\ &= \mathbf{A} \vec{v}(x).\end{align}\] Hence, \(\vec{v}(x)\) satisfies the desired differential equation.
Let \(\vec{u}_1\) and \(\vec{u}_2\) be the eigenvectors of \(\mathbf{A}\), with eigenvalues \(\lambda_1\) and \(\lambda_2\). The general solutions will be \[\vec{v}(x) = c_1 \vec{u}_1 e^{\lambda_1 x} + c_2 \vec{u}_2 e^{\lambda_2 x},\] where \(c_1\) and \(c_2\) are independent variables.