# 11.2: Non-Commuting Operators

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

In the previous section, we saw that if a particle can be in a definite state for two observables, then the two operators associated with those observables will commute. The converse is therefore also true; if two operators do not commute, then it is not possible for a quantum state to have a definite value of the corresponding two observables at the same time.

We’ve already seen examples of this. A particle can’t have a definite $$x$$ spin and a definite $$y$$ spin at the same time. If our theory is to be useful, then we would hope that $$\hat{S}_{x}$$ and $$\hat{S}_{y}$$ would not commute when they operate on a general normalized state $$|\psi\rangle$$. Let’s try it first in one order:

\begin{aligned} \hat{S}_{x} \hat{S}_{y}|\psi\rangle &=\frac{\hbar^{2}}{4}\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right]\left[\begin{array}{l} \psi_{1} \\ \psi_{2} \end{array}\right] \\ &=\frac{\hbar^{2}}{4}\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{l} -i \psi_{2} \\ i \psi_{1} \end{array}\right] \\ &=\frac{\hbar^{2}}{4}\left[\begin{array}{c} i \psi_{1} \\ -i \psi_{2} \end{array}\right] \\ &=i \frac{\hbar^{2}}{4}\left[\begin{array}{c} \psi_{1} \\ -\psi_{2} \end{array}\right] \end{aligned}\tag{11.4}

Now let’s try it in the other order:

\begin{aligned} \hat{S}_{y} \hat{S}_{x}|\psi\rangle &=\frac{\hbar^{2}}{4}\left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right]\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{l} \psi_{1} \\ \psi_{2} \end{array}\right] \\ &=\frac{\hbar^{2}}{4}\left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right]\left[\begin{array}{l} \psi_{2} \\ \psi_{1} \end{array}\right] \\ &=\frac{\hbar^{2}}{4}\left[\begin{array}{c} -i \psi_{1} \\ i \psi_{2} \end{array}\right] \\ &=-i \frac{\hbar^{2}}{4}\left[\begin{array}{c} \psi_{1} \\ -\psi_{2} \end{array}\right] \end{aligned}\tag{11.5}

Clearly the two are not the same; one is the negative of the other. Therefore, $$\hat{S}_{x}$$ and $$\hat{S}_{y}$$ do not commute when operating on a general state $$\psi$$, as expected.

It is interesting to note the effect of $$\hat{S}_{z}$$ on this same general state:

\begin{aligned} \hat{S}_{z}|\psi\rangle &=\frac{\hbar}{2}\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\left[\begin{array}{l} \psi_{1} \\ \psi_{2} \end{array}\right] \\ &=\frac{\hbar}{2}\left[\begin{array}{c} \psi_{1} \\ -\psi_{2} \end{array}\right] \end{aligned}\tag{11.6}

Notice that except for the constant out front, the vector produced by $$\hat{S}_{z}$$ on this state is the same as the vector produced by $$\hat{S}_{x} \hat{S}_{y}$$ and $$\hat{S}_{y} \hat{S}_{x}$$. In fact, we can put the two together:

$\begin{gathered} \left(\hat{S}_{x} \hat{S}_{y}-\hat{S}_{y} \hat{S}_{x}\right)|\psi\rangle=i \frac{\hbar^{2}}{2}|\psi\rangle \\ {\left[\hat{S}_{x}, \hat{S}_{y}\right]|\psi\rangle=i \hbar \hat{S}_{z}|\psi\rangle} \end{gathered}\tag{11.7}$

The term in brackets, $$\left[\hat{S}_{x}, \hat{S}_{y}\right]$$ is called the commutator of $$\hat{S}_{x}$$ and $$\hat{S}_{y}$$. It’s defined by the term in parentheses above it: $$\left(\hat{S}_{x} \hat{S}_{y}-\hat{S}_{y} \hat{S}_{x}\right)$$. It works out for the commutators of all three spin angular momentum operators that:

$\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hbar \hat{S}_{z}\tag{11.8}$

\begin{aligned} &{\left[\hat{S}_{y}, \hat{S}_{z}\right]=i \hbar \hat{S}_{x}} \\ &{\left[\hat{S}_{z}, \hat{S}_{x}\right]=i \hbar \hat{S}_{y}} \end{aligned}\tag{11.9}

This page titled 11.2: Non-Commuting Operators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pieter Kok via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.