Skip to main content
Physics LibreTexts

3.11: Exercises

  • Page ID
    15885
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1. Monochromatic light with a wavelength of \(6000 \unicode{x212b}\) passes through a fast shutter that opens for \(10^{-9}\) sec. What is the subsequent spread in wavelengths of the no longer monochromatic light?
    2. Calculate \(\langle x\rangle\), \(\langle x^{\,2}\rangle\), and \(\sigma_x\), as well as \(\langle p\rangle\), \(\langle p^{\,2}\rangle\), and \(\sigma_p\), for the normalized wavefunction \[\psi(x) = \sqrt{\frac{2\,a^{\,3}}{\pi}}\,\frac{1}{x^{\,2}+a^{\,2}}.\] Use these to find \(\sigma_x\,\sigma_p\). Note that \(\int_{-\infty}^{\infty} dx/(x^{\,2}+a^{\,2}) = \pi/a\).
    3. Classically, if a particle is not observed then the probability of finding it in a one-dimensional box of length \(L\), which extends from \(x=0\) to \(x=L\), is a constant \(1/L\) per unit length. Show that the classical expectation value of \(x\) is \(L/2\), the expectation value of \(x^{\,2}\) is \(L^2/3\), and the standard deviation of \(x\) is \(L/\sqrt{12}\).
    4. Demonstrate that if a particle in a one-dimensional stationary state is bound then the expectation value of its momentum must be zero.
    5. Suppose that \(V(x)\) is complex. Obtain an expression for \(\partial P(x,t)/\partial t\) and \(d/dt \int P(x,t)\,dx\) from Schrödinger’s equation. What does this tell us about a complex \(V(x)\)?
    6. \(\psi_1(x)\) and \(\psi_2(x)\) are normalized eigenfunctions corresponding to the same eigenvalue. If \[\int_{-\infty}^\infty \psi_1^\ast\,\psi_2\,dx = c,\] where \(c\) is real, find normalized linear combinations of \(\psi_1\) and \(\psi_2\) that are orthogonal to (a) \(\psi_1\), (b) \(\psi_1+\psi_2\).
    7. Demonstrate that \(p=-{\rm i}\,\hbar\,\partial/\partial x\) is an Hermitian operator. Find the Hermitian conjugate of \(a = x + {\rm i}\,p\).
    8. An operator \(A\), corresponding to a physical quantity \(\alpha\), has two normalized eigenfunctions \(\psi_1(x)\) and \(\psi_2(x)\), with eigenvalues \(a_1\) and \(a_2\). An operator \(B\), corresponding to another physical quantity \(\beta\), has normalized eigenfunctions \(\phi_1(x)\) and \(\phi_2(x)\), with eigenvalues \(b_1\) and \(b_2\). The eigenfunctions are related via \[\begin{aligned} \psi_1 &= (2\,\phi_1+3\,\phi_2) \left/ \sqrt{13},\right.\nonumber\\[0.5ex] \psi_2 &= (3\,\phi_1-2\,\phi_2) \left/ \sqrt{13}.\right.\nonumber\end{aligned}\] \(\alpha\) is measured and the value \(a_1\) is obtained. If \(\beta\) is then measured and then \(\alpha\) again, show that the probability of obtaining \(a_1\) a second time is \(97/169\).
    9. Demonstrate that an operator that commutes with the Hamiltonian, and contains no explicit time dependence, has an expectation value that is constant in time.
    10. For a certain system, the operator corresponding to the physical quantity \(A\) does not commute with the Hamiltonian. It has eigenvalues \(a_1\) and \(a_2\), corresponding to properly normalized eigenfunctions \[\begin{aligned} \phi_1 &= (u_1+u_2)\left/\sqrt{2},\right.\nonumber\\[0.5ex] \phi_2 &= (u_1-u_2)\left/\sqrt{2},\right.\nonumber\end{aligned}\] where \(u_1\) and \(u_2\) are properly normalized eigenfunctions of the Hamiltonian with eigenvalues \(E_1\) and \(E_2\). If the system is in the state \(\psi=\phi_1\) at time \(t=0\), show that the expectation value of \(A\) at time \(t\) is \[\langle A\rangle = \left(\frac{a_1+a_2}{2}\right) + \left(\frac{a_1-a_2}{2}\right)\cos\left(\frac{[E_1-E_2]\,t}{\hbar}\right).\]

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 3.11: Exercises is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?