Skip to main content
Physics LibreTexts

1.2: Recap- Position and Momentum States

  • Page ID
    34589
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Before proceeding, let us review the properties of quantum particles in free space. In a \(d\)-dimensional space, a coordinate vector \(\mathbf{r}\) is a real vector of \(d\) components. A quantum particle can be described by the position basis—a set of quantum states \(\{|\mathbf{r}\rangle\}\), one for each possible \(\mathbf{r}\). If we are studying a particle trapped in a finite region (e.g., a particle in a box), \(\mathbf{r}\) is restricted to that region; otherwise, \(\mathbf{r}\) is any real \(d\)-dimensional vector. In either case, the \(\mathbf{r}\)’s are continuous, so the position eigenstates form an uncountably infinite set.

    The position eigenstates are assumed to span the state space, so the identity operator can be resolved as

    \[\hat{I} = \int d^dr \, |\mathbf{r}\rangle \,\langle\mathbf{r}|,\]

    where the integral is taken over all allowed \(\mathbf{r}\). It follows that

    \[\langle \mathbf{r} | \mathbf{r}' \rangle = \delta^d(\mathbf{r}-\mathbf{r}').\]

    The position eigenstates are thus said to be “delta-function normalized”, rather than being normalized to unity. In the above equation, \(\delta^d(\cdots)\) denotes the \(d\)-dimensional delta function; for example, in 2D,

    \[\langle x,y \,|\, x',y' \rangle = \delta(x-x') \, \delta(y-y').\]

    The position operator \(\hat{\mathbf{r}}\) is defined by taking \(|\mathbf{r}\rangle\) and \(\mathbf{r}\) as its eigenstates and eigenvalues:

    \[\hat{\mathbf{r}} |\mathbf{r}\rangle \,=\, \mathbf{r}\, |\mathbf{r}\rangle.\]

    Momentum eigenstates are constructed from position eigenstates via Fourier transforms. First, suppose the allowed region of space is a box of length \(L\) on each side, with periodic boundary conditions in every direction. Define the set of wave-vectors \(\mathbf{k}\) corresponding to plane waves satisfying the periodic boundary conditions at the box boundaries:

    \[\nonumber\Big\{\mathbf{k} \; \Big| \;\; k_j = 2\pi m/L\;\;\mathrm{for} \;m\in\mathbb{Z}, \; j = 1, \dots,d\, \Big\}.\]

    So long as \(L\) is finite, the \(\mathbf{k}\) vectors are discrete. Now define

    \[|\mathbf{k}\rangle = \frac{1}{L^{d/2}} \, \int d^dr \; e^{i\mathbf{k}\cdot\mathbf{r}} |\mathbf{r}\rangle,\]

    where the integral is taken over the box. These can be shown to satisfy

    \[\langle\mathbf{k}|\mathbf{k}'\rangle = \delta_{\mathbf{k},\mathbf{k}'}, \quad \langle\mathbf{r}|\mathbf{k}'\rangle = \frac{1}{L^{d/2}} e^{i\mathbf{k}\cdot\mathbf{r}}, \quad I = \sum_{\mathbf{k}} |\mathbf{k}\rangle\,\langle\mathbf{k}|.\]

    The momentum operator is defined so that its eigenstates are \(\{|\mathbf{k}\rangle\}\), with \(\hbar\mathbf{k}\) as the corresponding eigenvalues:

    \[\hat{\mathbf{p}} |\mathbf{k}\rangle \,=\, \hbar \mathbf{k}\, |\mathbf{k}\rangle.\]

    Thus, for finite \(L\), the momentum eigenstates are discrete and normalizable to unity. The momentum component in each direction is quantized to a multiple of \(\Delta p = 2\pi\hbar/L\).

    We then take the limit of an infinite box, \(L \rightarrow \infty\). In this limit, \(\Delta p \rightarrow 0\), so the momentum eigenvalues coalesce into a continuum. It is convenient to re-normalize the momentum eigenstates by taking

    \[|\mathbf{k}\rangle \rightarrow \left(\frac{L}{2\pi}\right)^{d/2} |\mathbf{k}\rangle.\]

    In the \(L\rightarrow\infty\) limit, the re-normalized momentum eigenstates satisfy

    Definition: Re-normalized momentum eigenstates

    \[\begin{align} |\mathbf{k}\rangle &= \frac{1}{(2\pi)^{d/2}} \, \int d^dr \; e^{i\mathbf{k}\cdot\mathbf{r}} |\mathbf{r}\rangle, \\ |\mathbf{r}\rangle &= \frac{1}{(2\pi)^{d/2}} \, \int d^dk \; e^{-i\mathbf{k}\cdot\mathbf{r}} |\mathbf{k}\rangle, \\ \langle\mathbf{k}|\mathbf{k}'\rangle = \delta^d(\mathbf{k}-\mathbf{k}'),& \quad \langle\mathbf{r}|\mathbf{k}\rangle = \frac{1}{(2\pi)^{d/2}} e^{i\mathbf{k}\cdot\mathbf{r}}, \quad I = \int d^dk \;|\mathbf{k}\rangle\,\langle\mathbf{k}|. \end{align}\]

    The above integrals are taken over infinite space, and the position and momentum eigenstates are now on a similar footing: both are delta-function normalized. In deriving the above equations, it is helpful to use the formula

    \[\int_{-\infty}^\infty dx\; \exp(ikx) \;=\; 2\pi\, \delta(k).\]

    For an arbitrary quantum state \(|\psi\rangle\), a wavefunction is defined as the projection onto the position basis: \(\psi(\mathbf{r}) = \langle \mathbf{r}|\psi\rangle\). Using the momentum eigenstates, we can show that

    \[\begin{align} \begin{aligned}\langle \mathbf{r}|\hat{\mathbf{p}}|\psi\rangle &= \int d^dk \; \langle\mathbf{r}|\mathbf{k}\rangle \; \hbar\mathbf{k} \; \langle\mathbf{k}|\psi\rangle \\ &= \int \frac{d^dk}{(2\pi)^{d/2}}\; \hbar\mathbf{k} \;e^{i\mathbf{k}\cdot\mathbf{r}} \langle\mathbf{k}|\psi\rangle \\ &= -i\hbar\nabla \int \frac{d^dk}{(2\pi)^{d/2}}\; \;e^{i\mathbf{k}\cdot\mathbf{r}} \langle\mathbf{k}|\psi\rangle \\ &= -i\hbar \nabla\psi(\mathbf{r}).\end{aligned}\end{align}\]

    This result can also be used to prove Heisenberg’s commutation relation \([\hat{r}_i, \hat{p}_j] = i\hbar\delta_{ij}\).


    This page titled 1.2: Recap- Position and Momentum States is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform.