2.6: Exercises
- Page ID
- 34629
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercises
Exercise \(\PageIndex{1}\)
Use the variational theorem to prove that a 1D potential well has at least one bound state. Assume that the potential \(V(x)\) satisfies (i) \(V(x) < 0\) for all \(x\), and (ii) \(V(x)\rightarrow 0\) for \(x\rightarrow\pm\infty\). The Hamiltonian is
\[\hat{H} = - \frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x).\]
Consider a (real) trial wavefunction
\[\psi(x;\gamma) = \left(\frac{2\gamma}{\pi}\right)^{1/4} \,e^{-\gamma x^2}.\]
Note that this can be shown to be normalized to unity, using Gauss’ integral
\[\int_{-\infty}^{\infty} dx\; e^{-2\gamma x^2} = \sqrt{\frac{\pi}{2\gamma}}.\]
Now prove that
\[\begin{align} \begin{aligned} \langle E \rangle &= \int_{-\infty}^\infty dx \; \psi(x) \, \hat{H} \,\psi(x) \\ &= \frac{\hbar^2}{2m} \int_{-\infty}^\infty dx\, \left(\frac{d\psi}{dx}\right)^2 \;+\; \int_{-\infty}^\infty dx\; V(x) \,\psi^2(x) \\ &= A\sqrt{\gamma} \left[\sqrt{\gamma} \;+\, B \int_{-\infty}^\infty dx\; V(x) \;e^{-\gamma x^2} \right], \end{aligned} \end{align}\]
where \(A\) and \(B\) are positive real constants to be determined. By looking at the quantity in square brackets in the limit \(\gamma \rightarrow 0\), argue that \(\langle E \rangle < 0\) in this limit. Hence, explain why this implies the existence of a bound state.
Finally, try generalizing this approach to the case of a 2D radially-symmetric potential well \(V(x,y) = V(r)\), where \(r = \sqrt{x^2+y^2}\). Identify which part of the argument fails in 2D. [For a discussion of certain 2D potential wells that do always support bounds states, similar to 1D potential wells, see Simon (1976).]
Exercise \(\PageIndex{2}\)
In this problem, you will investigate the existence of bound states in a 3D potential well that is finite, uniform, and spherically-symmetric. The potential function is
\[V(r,\theta,\phi) = -U\Theta(a-r),\]
where \(a\) is the radius of the spherical well, \(U\) is the depth, and \((r,\theta,\phi)\) are spherical coordinates defined in the usual way.
The solution involves a variant of the partial wave analysis discussed in Appendix A. For \(E < 0\), the Schrödinger equation reduces to
\[\begin{cases}\Big(\nabla^2 + q^2\Big) \psi(r,\theta,\phi) = 0 \;\;\mathrm{where}\;\; q = \sqrt{2m(E+U)/\hbar^2}, \;\;&\mathrm{for} \; r \le a \\ \Big(\nabla^2 - \gamma^2\Big) \psi(r,\theta,\phi) = 0 \;\;\mathrm{where}\;\; \gamma = \sqrt{-2mE/\hbar^2}, \;\;&\mathrm{for} \; r \ge a. \end{cases}\]
For the first equation (called the Helmholtz equation), we seek solutions of the form
\[\psi(r,\theta,\phi) = f(r) \, Y_{\ell m}(\theta,\phi),\]
where \(Y_{\ell m}(\theta,\phi)\) are spherical harmonics, and the integers \(l\) and \(m\) are angular momentum quantum numbers satisfying \(l \ge 0\) and \(-l \le m \le l\). Substituting into the Helmholtz equation yields
\[r^2\frac{d^2f}{dr^2} + 2r \frac{df}{dr}+\left[q^2r^2-l(l+1)\right] f(r) = 0,\]
which is the spherical Bessel equation. The solutions to this equation that are non-divergent at \(r = 0\) are \(f(r) = j_\ell(qr)\), where \(j_\ell\) is called a spherical Bessel function of the first kind. Most numerical packages provide functions to calculate these (e.g., scipy.special.spherical_jn
in Scientific Python).
Similarly, solutions for the second equation can be written as \(\psi(r,\theta,\phi) = g(r) \, Y_{\ell m}(\theta,\phi),\) yielding an equation for \(g(r)\) called the modified spherical Bessel equation. The solutions which do not diverge as \(r\rightarrow \infty\) are \(g(r) = k_\ell(\gamma r)\), where \(k_\ell\) is called a modified spherical Bessel function of the second kind. Again, this can be computed numerically (e.g., using scipy.special.spherical_kn
in Scientific Python).
Using the above facts, show that the condition for a bound state to exist is
\[\frac{qj_\ell'(qa)}{j_\ell(qa)} = \frac{\gamma k_\ell'(\gamma a)}{k_\ell(\gamma a)},\]
where \(j_\ell'\) and \(k_\ell'\) denote the derivatives of the relevant special functions, and \(q\) and \(\gamma\) depend on \(E\) and \(U\) as described above. Write a program to search for the bound state energies at any given \(a\) and \(U\), and hence determine the conditions under which the potential does not support bound states.