3.2: Partial Measurements
- Page ID
- 34632
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let us recall how measurements work in single-particle quantum theory. Each observable \(Q\) is described by some Hermitian operator \(\hat{Q}\), which has an eigenbasis \(\{|q_i\rangle\}\) such that
\[\hat{Q}|q_i\rangle = q_i |q_i\rangle.\]
For simplicity, let the eigenvalues \(\{q_i\}\) be non-degenerate. Suppose a particle initially has quantum state \(|\psi\rangle\). This can always be expanded in terms of the eigenbasis of \(\hat{Q}\):
\[|\psi\rangle = \sum_i \psi_i\, |q_i\rangle, \;\;\mathrm{where}\;\;\,\textrm{and}\;\, \psi_i = \langle q_i|\psi\rangle.\]
The measurement postulate of quantum mechanics states that if we measure \(Q\), then (i) the probability of obtaining the measurement outcome \(q_i\) is \(P_i = |\psi_i|^2\), the absolute square of the coefficient of \(|q_i\rangle\) in the basis expansion; and (ii) upon obtaining this outcome, the system instantly “collapses” into state \(|q_i\rangle\).
Mathematically, these two rules can be summarized using the projection operator
\[\hat{\Pi}(q_i) = |q_i\rangle\langle q_i|.\]
Applying this operator to \(|\psi\rangle\) gives the non-normalized state vector
\[|\psi'\rangle = |q_i\rangle \langle q_i|\psi\rangle.\]
From this, we glean two pieces of information:
- The probability of obtaining this outcome is \(\langle\psi'|\psi'\rangle = |\langle q_i|\psi\rangle|^2\).
- The post-collapse state is obtained by the re-normalization \(|\psi'\rangle \rightarrow |q_i\rangle\).
For multi-particle systems, there is a new complication: what if a measurement is performed on just one particle?
Consider a system of two particles A and B, with two-particle Hilbert space \(\mathscr{H}_A \otimes \mathscr{H}_B\). We perform a measurement on particle \(A\), corresponding to a Hermitian operator \(\hat{Q}_A\) that acts upon \(\mathscr{H}_A\) and has eigenvectors \(\{|\mu\rangle\; |\; \mu = 1, 2, \dots\}\) (i.e., the eigenvectors are enumerated by some index \(\mu\)). We can write any state \(|\psi\rangle\) using the eigenbasis of \(\hat{Q}_A\) for the \(\mathscr{H}_A\) part, and an arbitrary basis \(\{|\nu\rangle\}\) for the \(\mathscr{H}_B\) part:
\[\begin{align} \begin{aligned} |\psi\rangle &= \sum_{\mu\nu} \psi_{\mu\nu}\, |\mu\rangle |\nu\rangle \\ &= \sum_\mu |\mu\rangle |\varphi_\mu \rangle, \;\;\;\mathrm{where}\;\;\; |\varphi_\mu\rangle\equiv \sum_\nu \psi_{\mu\nu}\,|\nu\rangle \;\in\; \mathscr{H}_B. \end{aligned} \label{psi_twop}\end{align}\]
Unlike the single-particle case, the “coefficient” of \(|\mu_i\rangle\) in this basis expansion is not a complex number, but a vector in \(\mathscr{H}_B\).
Proceeding by analogy, the probability of obtaining the outcome labelled by \(\mu\) should be the “absolute square” of this “coefficient”, \(\langle\varphi_\mu|\varphi_\mu\rangle\). Let us define the partial projector
\[\hat{\Pi}(\mu) \,=\, |\mu\rangle\langle \mu| \otimes \hat{I}.\]
The \(A\) slot of this operator contains a projector, \(|\mu\rangle\langle \mu|\), while the \(B\) slot leaves the \(\mathscr{H}_B\) part of the two-particle space unchanged. Applying the partial projector to the state given in Equation \(\eqref{psi_twop}\) gives
\[|\psi'\rangle \,=\, \hat{\Pi}(\mu)\, |\psi\rangle \,=\, |\mu\rangle |\varphi_\mu\rangle.\]
Now we follow the same measurement rules as before. The outcome probability is
\[P_\mu = \langle\psi'|\psi'\rangle = \langle \mu|\mu\rangle\, \langle \varphi_\mu|\varphi_\mu\rangle = \sum_\nu |\psi_{\mu\nu}|^2.\]
The post-measurement collapsed state is obtained by the re-normalization
\[|\psi'\rangle \;\;\rightarrow\;\; \frac{1}{\sqrt{\sum_{\nu'} |\psi_{\mu\nu'}|^2}}\; \sum_{\nu} \psi_{\mu\nu} |\mu\rangle |\nu\rangle.\]
Example \(\PageIndex{1}\)
A system of two spin-\(1/2\) particles is in the “singlet state”
\[|\psi\rangle = \frac{1}{\sqrt{2}} \Big(|\!+\!z\rangle|\!-\!z\rangle \,-\, |\!-\!z\rangle|\!+\!z\rangle\Big).\]
For each particle, \(|\!+\!z\,\rangle\) and \(|\!-\!z\,\rangle\) denote eigenstates of the operator \(\hat{S}_z\), with eigenvalues \(+\hbar/2\) and \(-\hbar/2\) respectively. Suppose we measure \(S_z\) on particle A. What are the probabilities of the possible outcomes, and the associated post-collapse states?
- First outcome: \(+\hbar/2\).
- The partial projector is \(|\!+\!z\rangle\langle+z| \otimes \hat{I}\).
- Applying the projection to \(|\psi\rangle\) yields \(|\psi'\rangle = (1/\sqrt{2})\,|\!+\!z\rangle|\!-\!z\rangle\).
- The outcome probability is \(\displaystyle P_+ = \langle \psi'|\psi'\rangle = \frac{1}{2}\).
- The post-collapse state is \(\displaystyle \frac{1}{\sqrt{P_+}} |\psi'\rangle = |\!+\!z\rangle |\!-\!z\rangle\)
- Second outcome: \(-\hbar/2\).
- The partial projector is \(|\!-\!z\rangle\langle-z| \otimes \hat{I}\).
- Applying the projection to \(|\psi\rangle\) yields \(|\psi'\rangle = (1/\sqrt{2})\,|\!-\!z\rangle|\!+\!z\rangle\).
- The outcome probability is \(\displaystyle P_- = \langle \psi'|\psi'\rangle = \frac{1}{2}\).
- The post-collapse state is \(\displaystyle = \frac{1}{\sqrt{P_-}} |\psi'\rangle = |\!-\!z\rangle |\!+\!z\rangle\).
The two possible outcomes, \(+\hbar/2\) and \(-\hbar/2\), occur with equal probability. In either case, the two-particle state collapses so that \(A\) is in the observed spin eigenstate, and \(B\) has the opposite spin. After the collapse, the two-particle state is no longer entangled.