4.5: Exercises
- Page ID
- 34653
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercises
Exercise \(\PageIndex{1}\)
Consider a system of two identical particles. Each single-particle Hilbert space \(\mathscr{H}^{(1)}\) is spanned by a basis \(\{|\mu_i\}\). The exchange operator is defined on \(\mathscr{H}^{(2)} = \mathscr{H}^{(1)} \otimes \mathscr{H}^{(1)}\) by
\[P \Big (\sum_{ij} \psi_{ij} |\mu_i\rangle|\mu_j\rangle \Big) \;\equiv\; \sum_{ij} \psi_{ij} |\mu_j\rangle|\mu_i\rangle.\]
Prove that \(\hat{P}\) is linear, unitary, and Hermitian. Moreover, prove that the operation is basis-independent: i.e., given any other basis \(\{\nu_j\}\) that spans \(\mathscr{H}^{(1)}\),
\[P \Big (\sum_{ij} \varphi_{ij} |\nu_i\rangle|\nu_j\rangle \Big) \;=\; \sum_{ij} \varphi_{ij} |\nu_j\rangle|\nu_i\rangle.\]
Exercise \(\PageIndex{2}\)
Prove that the exchange operator commutes with the Hamiltonian
\[\hat{H} = - \frac{\hbar^2}{2m_e} \Big(\nabla_1^2 + \nabla^2_2\Big) + \frac{e^2}{4\pi\varepsilon_0|\mathbf{r}_1 - \mathbf{r}_2|}.\]
Exercise \(\PageIndex{3}\)
An \(N\)-boson state can be written as
\[|\phi_1,\phi_2,\dots,\phi_N\rangle = \mathcal{N} \sum_p \Big(|\phi_{p(1)}\rangle |\phi_{p(2)}\rangle |\phi_{p(3)}\rangle \cdots |\phi_{p(N)}\rangle\Big).\]
Prove that the normalization constant is
\[\mathcal{N} = \sqrt{\frac{1}{N!\prod_\mu n_\mu!}},\]
where \(n_\mu\) denotes the number of particles occupying the single-particle state \(\mu\).
Exercise \(\PageIndex{4}\)
\(\mathscr{H}_{S}^{(N)}\) and \(\mathscr{H}_{A}^{(N)}\) denote the Hilbert spaces of \(N\)-particle states that are totally symmetric and totally antisymmetric under exchange, respectively. Prove that
\[\begin{align}\begin{aligned} \mathrm{dim}\left(\mathscr{H}_{S}^{(N)}\right) &= \frac{(d+N-1)!}{N!(d-1)!}, \\ \mathrm{dim}\left(\mathscr{H}_{A}^{(N)}\right) &= \frac{d!}{N!(d-N)!}. \end{aligned}\end{align}\]
Exercise \(\PageIndex{5}\)
Prove that for boson creation and annihilation operators, \([\hat{a}_\mu,\hat{a}_\nu] = [\hat{a}_\mu^\dagger,\hat{a}_\nu^\dagger] = 0\).
Exercise \(\PageIndex{6}\)
Let \(\hat{A}_1\) be an observable (Hermitian operator) for single-particle states. Given a single-particle basis \(\{|\varphi_1\rangle,|\varphi_2\rangle,\dots\}\), define the bosonic multi-particle observable
\[\hat{A} = \sum_{\mu\nu} \,a^\dagger_\mu \; \langle\varphi_\mu|\hat{A}_1|\varphi_\nu\rangle \; a_\nu,\]
where \(a_\mu^\dagger\) and \(a_\mu\) are creation and annihilation operators satisfying the usual bosonic commutation relations, \([a_\mu,a_\nu] = 0\) and \([a_\mu,a_\nu^\dagger] = \delta_{\mu\nu}\). Prove that \(\hat{A}\) commutes with the total number operator:
\[\Big[\hat{A}, \sum_\mu a^\dagger_\mu a_\mu \Big] = 0.\]
Next, repeat the proof for a fermionic multi-particle observable
\[\hat{A} = \sum_{\mu\nu} \,c^\dagger_\mu \; \langle\varphi_\mu|\hat{A}_1|\varphi_\nu\rangle \; c_\nu,\]
where \(c_\mu^\dagger\) and \(c_\mu\) are creation and annihilation operators satisfying the fermionic anticommutation relations, \(\{c_\mu,c_\nu\} = 0\) and \(\{c_\mu,c_\nu^\dagger\} = \delta_{\mu\nu}\). In this case, prove that
\[\Big[\hat{A}, \sum_\mu c^\dagger_\mu c_\mu \Big] = 0.\]
Further Reading
[1] Bransden & Joachain, §10.1–10.5
[2] Sakurai, §6
[3] J. M. Leinaas and J. Myrheim, On the Theory of Identical Particles, Nuovo Cimento B 37, 1 (1977).
[4] F. Wilczek, The Persistence of Ether, Physics Today 52, 11 (1999).