# 6.4: Neutrino Oscillations

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Neutrino oscillation is a phenomenon where a specific flavour of neutrino (electron, muon or tau) is later measured to have different flavour. The probability of measuring a particular flavour varies periodically. The three neutrino states are created by a radioactive decay in a flavour eigenstate as $$|f_1 \rangle$$, $$|f_2\rangle$$, $$|f_3\rangle$$ (electron, muon, tauon). However, these are not eigenstates of energy with a definite mass $$|m_1\rangle$$, $$|m_2\rangle$$, $$|m_3\rangle$$. We can expand the flavour eigenstate using the energy eigenstates as a basis:

$|f_i\rangle = \sum_j \langle m_j |f_i \rangle |m_j \rangle \nonumber$

the energy eigenstates show how the wavefunctions behave in time, $$m_j (t) = m_j (0) \text{ exp}(i\omega_j t)$$, where $$\omega_j = m_j c^2/\hbar$$. $$\omega_{ij} = (m_i − m_j )c^2/\hbar$$. Consider an electron neutrino produced by a fusion reaction in the sun, $$\Phi (t = 0) = |f_1\rangle$$, its wavefunction then varies as:

$\Phi (t) = \sum_j |m_j\rangle \langle m_j |f_1\rangle \text{ exp}(i\omega_j t) \nonumber$

For real neutrinos, the $$\langle m_j |f_1\rangle$$ matrix has non-zero, possibly even complex elements everywhere, but here for simplicity we suppose that

$\langle m_j |f_i \rangle = \begin{vmatrix} a & c & 0 \\ -c & a & 0 \\ 0 & 0 & 1 \end{vmatrix} \nonumber$

with $$a$$ and $$c$$ real, time independent and $$a^2 + c^2 = 1$$ for normalisation. Our electron neutrono then evolves as $$\Phi (t) = a \text{ exp}(i\omega_1t)|m_1(t) \rangle + c \text{ exp}(i\omega_2t)|m_2(t) \rangle$$, so the probability that some time later it is still an electron neutrino is

$| \langle f_1|\Phi (t) \rangle |^2 = |a^2 \text{ exp}(i\omega_1t) + c^2 \text{ exp}(i\omega_2t)|^2 \\ = a^4 + c^4 + a^2 c^2 (\text{exp}(i\omega_{21}t) + a^2 c^2 \text{ exp} (−i\omega_{21}t) \\ = 1 − 4a^2 c^2 \sin^2 (\omega_{21}t/2) \nonumber$

which is less than 1: it can somehow “turn into” a muon neutrino. Often, one writes $$a = \sin \theta$$ in which case $$4a^2 c^2 = \sin^2 \theta$$. $$\theta$$ is refered to as a “mixing angle”.

If $$a = c = \sqrt{\frac{1}{2}}$$, then with a frequency governed by the difference in masses, the electron neutrino turns completely into a muon neutrino, then back again. With smaller $$c$$, there’s always some chance that it will still be an electron neutrino. In reality, it is also possible to oscillate into a tau neutrino. This underlies the “solar neutrino problem”. Detection of solar neutrinos was the subject of the 2002 Nobel prize. Similar oscillation occurs in the kaon system due to a symmetrybreaking effect called “CP violation” subject of the 2008 Nobel prize. Here one of the states is subject to radioactive decay, so a particle not only “turns into” something else, it also disappears when it does so!

This page titled 6.4: Neutrino Oscillations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.