Skip to main content
Physics LibreTexts

6.4: Neutrino Oscillations

  • Page ID
    28777
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Neutrino oscillation is a phenomenon where a specific flavour of neutrino (electron, muon or tau) is later measured to have different flavour. The probability of measuring a particular flavour varies periodically. The three neutrino states are created by a radioactive decay in a flavour eigenstate as \(|f_1 \rangle \), \(|f_2\rangle \), \(|f_3\rangle\) (electron, muon, tauon). However, these are not eigenstates of energy with a definite mass \(|m_1\rangle \), \(|m_2\rangle \), \(|m_3\rangle \). We can expand the flavour eigenstate using the energy eigenstates as a basis:

    \[|f_i\rangle = \sum_j \langle m_j |f_i \rangle |m_j \rangle \nonumber\]

    the energy eigenstates show how the wavefunctions behave in time, \(m_j (t) = m_j (0) \text{ exp}(i\omega_j t)\), where \(\omega_j = m_j c^2/\hbar\). \(\omega_{ij} = (m_i − m_j )c^2/\hbar\). Consider an electron neutrino produced by a fusion reaction in the sun, \(\Phi (t = 0) = |f_1\rangle \), its wavefunction then varies as:

    \[\Phi (t) = \sum_j |m_j\rangle \langle m_j |f_1\rangle \text{ exp}(i\omega_j t) \nonumber\]

    For real neutrinos, the \(\langle m_j |f_1\rangle \) matrix has non-zero, possibly even complex elements everywhere, but here for simplicity we suppose that

    \[\langle m_j |f_i \rangle = \begin{vmatrix} a & c & 0 \\ -c & a & 0 \\ 0 & 0 & 1 \end{vmatrix} \nonumber\]

    with \(a\) and \(c\) real, time independent and \(a^2 + c^2 = 1\) for normalisation. Our electron neutrono then evolves as \(\Phi (t) = a \text{ exp}(i\omega_1t)|m_1(t) \rangle + c \text{ exp}(i\omega_2t)|m_2(t) \rangle \), so the probability that some time later it is still an electron neutrino is

    \[| \langle f_1|\Phi (t) \rangle |^2 = |a^2 \text{ exp}(i\omega_1t) + c^2 \text{ exp}(i\omega_2t)|^2 \\ = a^4 + c^4 + a^2 c^2 (\text{exp}(i\omega_{21}t) + a^2 c^2 \text{ exp} (−i\omega_{21}t) \\ = 1 − 4a^2 c^2 \sin^2 (\omega_{21}t/2) \nonumber\]

    which is less than 1: it can somehow “turn into” a muon neutrino. Often, one writes \(a = \sin \theta\) in which case \(4a^2 c^2 = \sin^2 \theta\). \(\theta\) is refered to as a “mixing angle”.

    If \(a = c = \sqrt{\frac{1}{2}}\), then with a frequency governed by the difference in masses, the electron neutrino turns completely into a muon neutrino, then back again. With smaller \(c\), there’s always some chance that it will still be an electron neutrino. In reality, it is also possible to oscillate into a tau neutrino. This underlies the “solar neutrino problem”. Detection of solar neutrinos was the subject of the 2002 Nobel prize. Similar oscillation occurs in the kaon system due to a symmetrybreaking effect called “CP violation” subject of the 2008 Nobel prize. Here one of the states is subject to radioactive decay, so a particle not only “turns into” something else, it also disappears when it does so!


    This page titled 6.4: Neutrino Oscillations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.