# 8.6: Variational Method in MAPLE

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The variational method is exceptionally well suited to computer algebra packages such as maple. The procedure is as follows:

• Define Trial wavefunction $$\Phi$$
• Evaluate Normalization factor $$|c^2 | = \langle \Phi |\Phi \rangle$$
• Evaluate unnormalised kinetic energy $$\langle T \rangle = −\hbar^2 \langle \Phi |\nabla^2 |\Phi \rangle /2m$$
• Evaluate unnormalised potential energy $$\langle V \rangle = \langle \Phi |\hat{V} |\Phi \rangle$$
• Differentiate with respect to variational parameters $$D_{a_n} = \frac{d}{da_n} (\langle T \rangle + \langle V \rangle )/c^2$$
• Solve $$D_{a_n} = 0$$ for all $$a_n$$
• Substitute optimal value for $$a_n$$ into $$\Phi$$.
• Evaluate $$[\langle T \rangle + \langle V \rangle ]/c^2$$ using optimised wavefunction.

If one needs to do another variational calculation for a different potential and trial wavefunction, only definitions 1 and 3 need to be changed.

This page titled 8.6: Variational Method in MAPLE is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.