Skip to main content
Physics LibreTexts

12.5: The Differential Cross-Section

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We now have all the ingredients, the scattered flux and the incident flux, to compute the cross-section:

    \[\frac{d\sigma}{ d\Omega} \equiv \frac{\text{scattered flux}}{\text{incident flux}} = \frac{mL^3}{\hbar k'} \frac{2 \pi}{\hbar} |V_{{\bf k'k}}|^2 \frac{L^3}{8\pi^3} \frac{mk}{\hbar^2} \nonumber\]

    Noting that, for elastic scattering, \(k' = k\), we obtain finally the so-called Born approximation for the differential cross-section:

    \[\frac{d\sigma}{ d\Omega} = \frac{m^2}{4\pi^2\hbar^4}L^6 \left| \langle {\bf k'} | \hat{V} | {\bf k} \rangle \right|^2 \nonumber\]

    where the matrix element \(V_{{\bf k'k}} \equiv \langle {\bf k'} | \hat{V} | {\bf k} \rangle\) is given by

    \[\langle {\bf k'} |\hat{V} |{\bf k} \rangle = \frac{1}{L^3} \int \int \int V ({\bf r}) \text{ exp } (−i\chi.{\bf r}) d\tau \nonumber\]

    with \(\chi \equiv {\bf k' − k}\), the so-called wave-vector transfer. Thus the required matrix element in the Born approximation is just the 3-dimensional Fourier transform of the potential energy function. The total scattering cross section is simply:

    \[\sigma_T = \int \frac{d\sigma}{d\Omega} d\Omega = \int \int \frac{d\sigma}{d\Omega} \sin \theta d\theta d\phi \nonumber\]

    Observe that the final result for the differential cross-section is independent of the box size, \(L\), which we used to normalise the plane-wave states.

    This page titled 12.5: The Differential Cross-Section is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.