Skip to main content
Physics LibreTexts

3.6: Some kinematic identities

  • Page ID
    13034
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives

    • List of various kinematics equations and identities

    In addition to the relations

    \[D(v) = \sqrt{\frac{1+v}{1-v}}\]

    and

    \[v_c = \frac{v_1 + v_2}{1 + v_1 v_2}\]

    the following identities can be handy. If stranded on a desert island you should be able to rederive them from scratch. Don’t memorize them.

    \[v = \frac{D^2 - 1}{D^2 + 1}\]

    \[\gamma = \frac{D^{-1} + D}{2}\]

    \[v\gamma = \frac{D - D^{-1}}{2}\]

    \[D(v)D(-v) = 1\]

    \[\eta = \ln D\]

    \[v = \tanh \eta\]

    \[\gamma = \cosh \eta\]

    \[v\gamma = \sinh \eta\]

    \[\tanh (x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}\]

    \[D_c = D_1 D_2\]

    \[\eta _c = \eta _1 + \eta _2\]

    \[v_C \gamma _c = (v_1 + v_2)\gamma _1 \gamma _2\]

    The hyperbolic trig functions are defined as follows:

    \[\sinh x = \frac{e^x - e^{-x}}{2}\]

    \[\cosh x = \frac{e^x + e^{-x}}{2}\]

    \[\tanh x = \frac{\sinh x}{\cosh x}\]

    Their inverses are built in to some calculators and computer software, but they can also be calculated using the following relations:

    \[\sinh^{-1}x = \ln \left ( x + \sqrt{x^2 + 1} \right )\]

    \[\cosh^{-1}x = \ln \left ( x + \sqrt{x^2 - 1} \right )\]

    \[\tanh^{-1}x = \frac{1}{2}\ln \left ( \frac{1 + x}{1 - x} \right )\]

    Their derivatives are, respectively, \(\left ( x^2 + 1 \right )^{-1/2}\), \(\left ( x^2 - 1 \right )^{-1/2}\) and \(\left ( 1 - x^2 \right )^{-1}\).


    This page titled 3.6: Some kinematic identities is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Benjamin Crowell via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?