Skip to main content
\(\require{cancel}\)
Physics LibreTexts

8.3: Isothermal Expansion of an Ideal Gas

  • Page ID
    7258
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    An ideal gas obeys the equation of state PV = RT (V = molar volume), so that, if a fixed mass of gas kept at constant temperature is compressed or allowed to expand, its pressure and volume will vary according to PV = constant. That is, Boyle's Law. We can calculate the work done by a mole of an ideal gas in a reversible isothermal expansion from volume V1 to volume V2 as follows.

    \[ W=\int_{V_{1}}^{V_{2}} P d V=R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}=R T \ln \left(V_{2} / V_{1}\right)\]


    8.3: Isothermal Expansion of an Ideal Gas is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

    • Was this article helpful?