# 10.5: E- Stirling's Approximation

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The Stirling formula is an approximation for n! that is good at large values of n.

$n !=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$

$\ln (n !)=\underbrace{\ln 1}_{0}+\ln 2+\ln 3+\cdots+\ln (n-1)+\ln (n)$ Note that the function ln x is nearly flat for large values of x. For example, ln 1023 is about equal to 23.

From the figure

$\ln (6 !)=\text { area under the staircase }>\int_{1}^{6} \ln x d x$

and in general

$\ln (n !)>\int_{1}^{n} \ln x d x=[x \ln x-x]_{1}^{n}=n \ln n-n+1.$

For large values of n, where the ln n function is nearly flat, the two expressions above become quite close. Also, the 1 becomes negligible. We conclude that

$\ln (n !) \approx n \ln n-n \quad \text { for } n \gg 1.$

This is Stirling’s formula. For corrections to the formula, see M. Boas, Mathematical Methods in the Physical Sciences, sections 9-10 and 9-11. You know that

$A^n$

increases rapidly with n for positive A, but

$n ! \approx\left(\frac{n}{e}\right)^{n}$

increases a bit more rapidly still.

E.1 Problem: An upper bound for the factorial function

Stirling’s approximation gives a rigorous lower bound for n!.

a. Use the general ideas presented in the derivation of that lower bound to show that

$\int_{1}^{n} \ln (x+1) d x>\ln n !.$

b. Conclude that

$(n+1) \ln (n+1)-n+1-2 \ln 2>\ln n !>n \ln n-n+1.$

This page titled 10.5: E- Stirling's Approximation is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.